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Abstract

Through an appeal to asymptotic Gaussian representations of certain em-
pirical stochastic processes, we are able to apply the technique of continuous
regression to derive parametric and nonparametric functional estimates for
underlying probability laws.

This asymptotic regression approach yields estimates for a wide range
of statistical problems, including estimation based on the empirical quantile
function, Poisson process intensity estimation, parametric and nonparametric
density estimation, and estimation for inverse problems.

Consistency and asymptotic distribution theory are established for the
general parametric estimator. In the case of nonparametric estimation, we
obtain rates of convergence for the density estimator in various norms.

We demonstrate the application of this methodology to inverse problems
and compare the performance of the asymptotic regression estimator to other
estimation schemes in a simulation study. The asymptotic regression esti-

. mates are easily computable and are seen to be competitive with other results
in these areas.
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1. Asymptotic Regression Estimation

1.1 Background

Arguably, estimation is the essential problem of statistics. To set up the
conceptual framework for estimation, we assume that a random quantity
T behaves according to a certain but unknown probability law L and that
quantitative information about £ can be recovered through observation of T
In the English language, the noun estimate connotes a subjective judgment
that takes the place of definite factual knowledge. This is akin to its use in
statistics, which we illustrate with the typical example of an independent,
identically distributed (i.i.d.) random sample.

" The random variable T' has a probability density function
given by f(+;7) where the parameter 7 is unknown. We observe a
random sample (T3,...,T,) of i.i.d. values of T'. A specific func-
tion 7,(T1, ... ,Ty) of the observation may be called an estimator
of 7. Given an observation, the value of that function is then
an estimate of 7. The estimate is considered to be an acceptable"
substitute for the unknown true parameter value.

Efforts to quantify estimator accuracy and remove, reduce, or otherwise con-
trol the subjective element in this process can be traced back at least two
hundred years. Since that time, numerous criteria for generating and select-
ing estimators have been proposed, including the methods of least squares
(due to K. F. Gauss [20]), moments (due to K. Pearson [55]), maximum like-
lihood (due to R. A. Fisher [19]), minimum chi-square, minimum distance,
maximum product of spacings, minimax, Bayes, and Pitman, to name a few.

In spite of this diversity, however, statisticians seem to agree that the
accuracy of a useful estimator should increase as the sample size n increases.
This requires among other things that f(-;7) — 7 is a function, which is
to say that two distinct parameter values cannot correspond to the same
distribution. This condition, termed identifiability, is a feature of a class of
probability distributions and not of any estimator.
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Given an identifiable class of distributions, we can begin to talk about
desirable properties of estimators. First of all, note that an estimator is
calculated from a finite sample that is representative of a larger finite or
possibly infinite population. Fisher’s [19] original characterization of the no-
tion of consistency is that an estimator calculated from the entire population
should achieve the true parameter value. Of course, the estimator itself is
also a random variable (r.v.); and, formally, an estimator is considered to
be consistent if it converges in probability to the true parameter value as the
sample size increases. That is,

(Ve > 0) (V6 >0)(3N) (Vn > N) Pr(lm —7| > 0) <¢,
which is denoted more succinctly by

Tw =T as n — oo.

J

A concept related to convergence in probability is that an estimator may be
asymptotically unbiased. That is,

Et,— 7 as n— oo,

where “E” denotes the expectation. For an asymptotically unbiased estima-
tor, the criterion that accuracy increases with sample size can be formalized
as

Varr, -0 as n — oo,

where “Var” denotes the variance. This states that the dispersion of an
estimator should decrease as n increases. The connection between accuracy
and variance of an estimator was recognized in the time of Gauss and Laplace,
as noted by Stuart and Ord [72]. '

The existence of the well-known Cramér-Rao lower bound for the variance
of an estimator provides in certain cases a criterion for optimality of an
estimator. This occurs, for example, in maximum-likelihood estimation of
a probability density function parameter based on a random sample. See
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C. R. Rao [57] for an exposition. The maximum-likelihood estimator (MLE)
achieves this bound asymptotically, and is hence asymptotically optimal. As
a special case, we have the problem of regression in the linear model with

normal error,
Y=XB+e, (1.1)

where Y is an n-vector, X is a fixed n X p matrix, 3 is a p-vector of coef-
ficients to be estimated, and the error vector £ has the multivariate normal
distribution with & ~ N,(0,02I). In this case, it is known that the maximum-
likelihood, least-squares, and minimum-variance unbiased estimators of 3 are
one and the same. Seber [60] points this out. A

In the present work, we propose an estimation methodology for a class of
problems that includes estimation of 7 based on i.i.d. observations 71, ... ,T,
from the probability density f(-; 7). The scheme is based on a generalization
of the linear regression model of equation (1.1).

1.2 Introduction

The estimation procedure proposed in this work is based on the observation
of a stochastic process with certain asymptotic properties. The principle of
maximum likelihood and the technique of continuous-time regression are ap-
plied to an asymptotic version of the observed process to yield estimates of an
underlying probability law. The resulting estimators have optimal properties
similar to those of maximum-likelihood and least-squares estimators.

We can now describe the modeling situation and estimation procedure
that are the basis of this work. To that end, let {T},},en be a sequence of
random variables with common probability law £(7), where the unknown
true parameter value 7 lies in some suitable parameter space ©. It is 7 that
we wish to estimate. For each n, let X, (t) be a stochastic process with
sample paths in a space 8 of functions defined on a domain I. Suppose that
X, is determined by (T3, ... ,T;,) and that X, is a sufficient statistic for L(7).
Furthermore, let the sequence of stochastic processes {X,}nen converge in
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distribution in the sense that
Va(Xe— M) 25 A, as n— oo, (1.2)

where M, is a deterministic function and A, is a zero-mean Gaussian stochas-
tic process with covariance function E A,(s)A.(t) = K, (s, 1).

For a finite-dimensional (vector) random variable, convergence in distri-
bution is taken to mean convergence of the cumulative distribution at each
continuity point. The infinite-dimensional (function) situation is more com-
plicated, and the practical technical details are application-dependent. Our
discussion of convergence in distribution for random functions is deferred to
section 2.6.1.

The following model, which we call the asymptotic model for the process
X,., plays a central role in the development of the proposed estimator. With
M, and A, as in (1.2), consider a process X, defined by

X3(t) = My(8) + AL (0). , (13)

The key feature of this model is that the mean and covariance functions of
the process sequence elements share a common parameter 7.

In the remainder of this chapter, we outline a general estimation tech-
nique for the unknown parameter of the asymptotic model (1.3) based on
concepts from continuous-time regression and maximum-likelihood estima-
tion for Gaussian stochastic processes. The technique is applicable in the
finite-dimensional case, where © C R? for some finite positive integer d, and
also in the nonparametric setting, where © is some space of functions on I.
The proposed estimator for 7 based on the X, of (1.2) is then obtained by
using X, in place of X} in the estimation scheme. (In what follows, we only
occasionally distinguish X, from X;}.) The properties of these estimators are
studied in the remainder of this work.

In chapter 2, we consider the parametric estimation problem, in which
the parameter space is a subset of R? for a finite positive integer d. We also
discuss the existence, consistency, and optimality of our estimators. In chap-
ter 3, we consider nonparametric estimation and see that the corresponding
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penalized estimation procedure yields a solution with desirable properties
and provides a unified approach to a wide class of statistical problems. In
chapter 4, we discuss the practical computational aspects of the proposed
nonparametric estimation scheme.

Fundamental examples of stochastic processes that satisfy (1.2) are the
empirical cumulative distribution function (c.d.f.), empirical quantile func-
tion (q.f.), and Poisson counting process, as detailed in the following exam-
ples. ‘

Example (Random Sample). Let Tj,...,T, be ii.d. random variables
defined on I with continuous cumulative distribution function F = F, and
probability density function f = F'. The empirical c.d.f. is defined as

Ft) = %iI(Ti < ).

=1

It is well known that F,, is a sufficient statistic for 7 and that
Vi(Fa—F)-%3BoF as n— .

Here, B is a standard Brownian bridge, which is a zero-mean Gaussian pro-
cess with covariance function s At — st. See, for example, Billingsley (5],
Theorem 16.4. So we identify F,,(t) with F(t) +n~'/2 B(F(t)), and then we
estimate 7 based on modeling F,, by equation (1.3) with the indicated mean
and covariance functions. Specifically, the model is

Fo(t) = Fr(t) + 75 A-(t),
where A, is a zero-mean Gaussian process with covariance function F.(s A
t) — Fr(s)F:(2).

Nussbaum [48] exhibits the following result, which provides theoretical
justification for the asymptotic identification of an empirical process with
a Gaussian model in the case of density estimation: The two sequences of
statistical experiments given by observations

T;, i € {1,...,n}, iid. with p.d.f. f, and
dX (t) = fM*(t) dt + In 2 dW (2),




where W is a standard Wiener process, are asymptotically equivalent in the
sense of Le Cam’s deficiency distance. Le Cam and Yang [43] discuss the
asymptotic characterization of statistical experiments. Our aim, however, is
to exploit the general heuristic identification of (1.2) with (1.3) and thereby
obtain practical and useful estimation procedures for a variety of statistical
models. And so we continue. _

For the random sample, a second model is based on another sufficient
statistic, the empirical quantile function. The quantile function @, defined
by Q(u) = inf{t : F(t) > u}, is the unique left-continuous pseudo-inverse of
- F. The empirical quantile function is given by

Qn(u) = inf{t : F,(t) > u},

and the density quantile function is g = foQ. Differentiation of F(Q(u)) = u
yields @' = 1/g. In this case, it is known that
1
"o
where B is a standard Brownian bridge. See, for example, Shorack and
Wellner [63], section 18.1. So we identify Q,(t) with Q- (t) +n~/2 Q".(t)B(t)
and use the model

(Q,,—Q)-—QB as n — oo,

Qn(t) = Q-(t) + %A‘r(t)a
where A, is a zero-mean Gaussian process with covariance function
Q)@ E)(s At~ st)

Example (Poisson Process). Let Tj,... ,T, bei.i.d. Poisson processes on
I =[0,1]. Each T; has a representation as a sum of point masses

ki 4
T = Z ‘St.-,-’

i=1

and with each T; we associate the counting process
ki
Ni(t) = I(t; < 9.
=1

6



The processes N; have a common compensator, or mean-value function,
G(t) = G,(t) = E Ni(t). Its derivative g = G' is called the intensity function.
A sufficient statistic for 7 is

Xo(t) = %ZNi(t).

i=1

It is known that
Vi (X, - G) -5 \/G(l)-Wo-C% as n — 0o,

where W is a standard Wiener process, which is a zero-mean Gaussian process
with covariance function EW (s)W(t) = s At. So, we identify X,(t) with
G(t) + G(1)Y?n~2 W [G(t)/G(1)] and model the process as

Xn(t) = G(t) + 7z A(t),
where A is a zero-mean Gaussian process with covariance function G(s A t).

Other examples of applications that may fit into this scheme include
estimation based on the hazard function, random censoring models, marked
Poisson processes, and deconvolution and other ill-posed inverse problems.

A special case of this procedure is noted by Emanuel Parzen [54]. He con-
siders problems of location and scale estimation based on continuous-time re-
gression of the empirical quantile function. His methodology reproduces well-
known results about the use of linear combinations of order statistics to solve
such problems. For distributions with location and scale dependence, such
as the three-parameter lognormal and Weibull distributions, Kindermann
and LaRiccia [32] propose an easilyAcomputable generalization of Parzen’s
procedure. |

As stated, the estimation technique we propose is based on ideas from
continuous-time regression. So, before the estimators are defined, we give
a brief overview of that subject. We also develop the generalizations that
enable us to apply continuous-time regression to the modeling of this section’s
examples. '



1.3 Regression for Gaussian Processes with Known

Covariance

This section contains the basic facts we need about continuous-time regres-
sion for Gaussian stochastic processes with known covariance functions. More
details are presented in the Appendix. The development is adapted from the
work of Emanuel Parzen [51], [52], and [53].

Consider a Gaussian stochastic process

X(t) = M(t) + A@t) |

- defined for t € I with unknown mean-value function E X(t) = M(t) and
known covariance function E A(s)A(t) = K (s,t). The purpose of continuous-
time regression is estimation of the mean-value function. This is accom-
plished by identifying an appropriate likelihood ratio and then cohducting
maximum-likelihood estimation.

The reference measure for the likelihood ratio is derived from another
process Y(t), which is a zero-mean Gaussian stochastic process with covari-
ance function EY(s)Y(¢) = K(s,t), so X and Y have the same (known)
covariance function. Denote by P(K, M) and P(K) the probability measures
induced by X(t) and Y'(t), respectively, on the space of sample paths. The
likelihood ratio itself is the Radon-Nikodym derivative

dP(K,M)
dP(K) '’

which is defined using a space of random variables Ly(X), a function space

Hy, and a map ¢ between the two.
To define Ly(X), first consider the linear span of X (t), denoted L(X) and
defined by

L(X) = {zn:a,-X(t,-):n €N, t; €1, q; ER} .

=1

This is the set of all finite linear combinations of values of X taken at ar-
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bitrary points. An inner product on L(X) is given by (u,v) = Euv. The
Hilbert space Ly(X) is the completion of L(X) in the corresponding norm
lull = VEZ. |

Denote by Hy the reproducing kernel Hilbert space (RKHS) of functions
on I with reproducing kernel K, inner product (-, ), and norm ||-||x, where,
of course, ||z||% = (z,z). See Aronszajn [2] for a discussion of reproducing
kernel Hilbert spaces. The point evaluation functional representers in Hy
are denoted by K, t € I, where K;(s) = K(s,t). These have the “reproduc-
ing” property—namely, (K3, f)x = f(t) for allt € I and f € Hg, and in
particular (K,, K;) = K(s,t) for all s and ¢ in I.

The function ¢x : Hx — Ly(X) is defined on the generators of Hx by
ok (K;) = X (t) and by linear extension on the whole space. The map ¢ is in
fact a congruence, or inner-product-preserving vector space isomorphism.

We are now able to define the likelihood ratio.

Theorem 1.1. In the event that M € Hy, the measures P(K, M) and P(K)
are equivalent. Then their likelihood ratio is given by

dP(K, M)

dP(K) (X) = exp [6x (M) — 1[I M|%] - (1.4)

L(M) =
Proof. See Parzen [51]. a

This functional is the basis for determining maximum-likelihood estimates of
the parameter M. Specifically, one takes as the estimator any value M that
is a solution of the optimization problem

maximize L(M) subject to M € Hg.

Thus, the estimator M satisfies

dP(K, M) dP(K, M)

2P(K) (X)=sup{ 2P(K) (X):MEHK},

9



1

which is typically an ill-posed problem. To avoid this difficulty, one usually
specifies a set M of candidate functions for M and then attempts to solve a

problem equivalent to

ma.x}lmize L(M) subject to M € M. (1.5)

In this case, the estimator M satisfies

4K, 1) dP(K, M),
_d?(K) (X) = sup {———d?(K) (X): M€ M} .

It is tempting to observe that in a formal sense ¢x(K:) = (K, X))y =
X (t), and so ¢x(f) = (f,X)y for all f € Hg as another expression of the
reproducing property of the K;. Then one would have

~2log L(M) = ~2¢x(M) + | Mk
= —2(X, M) + Mk
= |IX — Ml ~ X, (L6)

and the optimization problem (1.5) would be a true least-squares problem.
However, the sample paths of X do not necessarily lie in Hg, the construction
®k(f) cannot be an inner product of elements in Hy, and the characteriza-
tion of (1.6) is only formal. Some authors use the inner product notation
for ¢, with the caveat that it is not really an inner product. We reserve
inner product notation for inner products and denote the congruence by ¢.
Nonetheless, in all of our applications, the congruence does indeed have the
same form as the inner product.

We now consider several standard parameter set cbnﬁgurations, or possi-
bilities for the set M. The first two, parametric and nonparametric estima-
tion, are the ones used in the current work. The other three are included for
their intrinsic interest and to illustrate the connection between continuous
regression for Gaussian processes and discrete finite least-squares regression.
The standard parameter set configurations follow.

10



(i) Nonparametric Estimation. M is a subset of some function space such
as L;. This is the most general case, in terms of the restrictions placed on
candidate functions.

(ii) Parametric Estimation. In this case M = {M, : 7 € ©} for some
(finite-dimensional) set © C R? and family of parametric functions M, (t).
The estimator M, usually exists, as long as M is a reasonable parametric
family. But calculation can be troublesome, and determining the proba-
bilistic properties of the estimator in complete generality can be practically
impossible. This is not so in the following situation, which is a special case
of (ii).

(iii) Finite-Dimensional Subspace. For a fixed positive finite integer k,
choose the functions f;,...,fx in Hx and let M = {3°F aifi : a; € R}.
Then one can show that the estimator is given by

k
Ma() =3 Aifi(t),
i=1
in which the vector A = (4;,...,Ax)T is a solution of the normal equations
CA = B, where the matrix C and vector B have components Cy; = (f;, f;)
and B; = ¢x(f;), respectively. Note the similarity to linear regression. In this
case, My, is a uniformly minimum-variance unbiased estimator. See Parzen’s
papers for the details.

Comments on the utility of the following two examples range from “illumi-
nating” in Parzen [51], section 8.36, to “of little interest” in Grenander [22],
p. 98. :

() Finite Domain. Consider X (t) = M(t) + A(t) with ¢t € {t,,...,t,}.
Then X, M, and A are finite-dimensional (column) vectors, S0 We can write
them in terms of their components; ie., X = (Xi,...,X,)T, where X; =
X (t;), and likewise for M and A. Thus, the model becomes

X =M+ A4,

with EX = M and A ~ N;,(0, K). The vector A has the multivariate normal
distribution with variance-covariance matrix K = E AAT, where the compo-

11



nents of K are K;; = E A;A;. In this case, Hx = R* with the interpretation
that f; = f(&) for f = (f1,...,fa)T € Hg. The inner product in Hy is
given by (f,g)x = fTK'g. The point evaluation functional representers in
Hy are the columns of K. Specifically, let K; be the i*® column of K. Then
the requisite properties (K;, K;), = K;; and (f, K;); = f; are satisfied. The
congruence ¢k is given by ¢x(f) = (f, X), so that ¢x(K;) = X, as re-
quired. The likelihood ratio for X with respect to a zero-mean multivariate
normal random variable having the same variance-covariance matrix is sim-
ply the quotient of the appropriate multivariate normal probability densities,

, _ (@rlK)Y* exp[~3(X — MY"K-}(X — M)]
= @n[K)) 72 exp[-1XTK-1X] ‘

It is easily verified that L = exp [¢px(M) — 1| M| %] . Thus, the continuous-

regression setup reduces to the familiar maximum-likelihood formulation for
finite regression, and the estimator M is given by

M = arg min || X — M|k

Note that this is a true least-squares problem. A specific form for M is
considered in the final example.
(v) Linear Model. In case (iv), fix an n x k matrix Z and let

M={Z8:p e R}.
Then it is very well known that the estimator
B= arg min [|X — ZBk
is any solution # of the normal equations
ZTK-178 = ZTK'X.
In the nonsingular case, the unique solution is
B=(2ZTK1'2)"'ZTK'X.
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Of course, this is the classical linear regression model.

In our applications, we only consider the parameter set configurations
of cases (i) and (i1). The remaining cases simply illustrate the connection
between continuous and discrete regression for Gaussian processes and are
included to illustrate the fact that continuous regression is a generalization
of the familiar discrete (finite) situation.

1.4 Sequences of Processes with Known Covariance

The basic model for continuous regression, described in section 1.3, is
X(t) = M) + A2)

with E X (t) = M(t) unknown and E A(s)A(t) = K(s,t) known. Two gen-
eralizations of this model are required in order to apply the methodology of
continuous regression to the models described in section 1.2. In this section,
we discuss the first required generalization; that is, we identify the likeli-
hood ratio sequence for the known-covariance version of the model sequence
(1.3). The second generalization, adaptation of the continuous-regression
methodology to the case of unknown covariance, is discussed in section 1.5.
Finally, in section 1.6, we combine the two generalizations and formulate the
estimation principle that is the subject of this work.
Now we compute the likelihood ratio sequence

dP(K,, M)
for the sequence of models
Xn(t) = M(t) + J=A(2). (1.7)

The mean-value function here is E X,,(t) = M(t), and the (known) covariance
functions K,, satisfy

Kn(s,t) = Cov[Xa(s), Xa(t)] = 2K(s,?).

13



As in section 1.3, P(K,, M) and P(K) are the probability measures induced
by X, and Y, respectively, on the space of sample paths. Here, Y (¢) is a
zero-mean Gaussian process with covariance function EY (s)Y (¢) = K(s, t).

First, observe that nK, = K. It is clear that Hy = H k,- The inner prod-
uct of Hy is characterized by ||K;||% = K(t,t), whereas the inner product
on H, is characterized by ||Knll%, = Kn(,t). Then we have

2
1Kel% = K(t,2) = nKa(t,t) = nl|Kullk, =n|[1 K], = 21Kk,

and so for all G € Hx
IGl%, = nlGll%-

Next, we consider the sequence of maps ¢, : Hg, — L2(X,,), which satisfy
¢n(Knt) = Xn(t)

for all n € N, where K,,; = K,(-,t). We make the dependence of ¢x upon "
X explicit and recall that ¢ : Hx — L2(X) is characterized by ¢x(K;) =

ok (X, K:) = X(t). The map ¢, : Hx — Ly(X,,) likewise satisfies ¢ (Kpns) =

¢n(XmKnt) = Xn(t)’ so by linearity we get (bn(XmKt) = ¢n(anKnt) =

nX,(t). Assuming the formal dependence of the maps on the processes is

independent of n, which is true in all practical situations, we have

¢"(Xm G) = n¢K(Xm G)'

Then the likelihood ratio sequence for (1.7) is given by

%!)‘Q(Xn) = exp [néx(Xn, M) - 3| M| k] : '
_ [dPp& M) 0 )]
_ [W( X,,)] . (1.8)

Of course, a maximum-likelihood estimator M of M satisfies

dP(Kn, M), dP(Kn, M)
4P(K) (X")‘S“p{ a7(K)

14

(X,,):MGM}.



Therefore, in light of the scaling property of equation (1.8), we finally observe
that a maximum-likelihood estimator M of M also satisfies
dP(K, M) _ dP(K, M)
mm‘m”m{mm)
for suitable M. Thus, for the purposes of optimization, the dependence of
the likelihood ratio on n may be ignored. We simply use the likelihood ratio
(1.4).

(LyMeM}

1.5 Regression for Gaussian Processes with Unknown

Covariance

The results of sections 1.3 and 1.4 pertain to Gaussian processes with known
covariance. They are not directly applicable to the modeling situations of
section 1.2. In this section, we propose an iterative estimation scheme for
a certain class of Gaussian processes (with unknown covariance) that does
include the models of section 1.2.

Consider a Gaussian stochastic process

X(t) = M(t) + A(t)

with unknown mean E X (t) = M(t) and covariance E A(s)A(t) = K (s, t).
Note that the covariance depends on the unknown mean. Equivalently, the
mean and covariance functions share a common unknown parameter that we
wish to estimate, as in the models of section 1.2. We assume that the true
mean-value function M lies in some fixed set M of candidate mean-value
functions.

We construct a recursive sequence (M, M;, M,...) of estimators for M
as follows. Select an arbitrary M, € M, and for i > 1, let M; € M be such

that :
dP(Kp,_,, M;) dP(Ky,_,, M)

X)=su
By 00 =s | e
In words, we first assume an “initial guess” parameter value M. Then we re-

(X):MEM}.

peatedly calculate the covariance function using the current parameter value
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and estimate a new parameter value by means of the principle of maximum
likelihood for Gaussian processes with known covariance described in sec-
tion 1.3.

1.6 The Asymptotic Regression Estimation Principle

We can now formulate the general principle for estimation of the unknown
parameter of section 1.2.

Apply the recursive estimation scheme of section 1.5 to the
probability model sequence given by equation (1.3), taking into
account the scaling property of section 1.4.

Explicitly, the asymptotic model sequence is
Xa(t) = M(t) + J=A®),

where A(t) is a zero-mean Gaussian process with covariance function
E A(s)A(t) = Ku(s,t). The covariance function depends on the unknown
mean-value function. Equivalently, the mean and covariance functions share
" a common parameter. Our aim is to estimate this unknown parameter.

We assume that M is a fixed set of candidate mean-value functions and
that the process sequence {X;}nen is given. The definition follows.

Definition (Asymptotic Regression Estimator). For each n, construct

the recursive sequence (M, o, My, 1, Mp 2, .. .) of estimators for M in this man-

ner: Select an arbitrary M, o € M, and for 7 > 1, let M, ; € M be such that
dP(Kuy ., My dP(Kpy, ..., M

( My -1 n:‘) (Xn) = sup { ( My -1 )
dfp(KMn,i—l) d?(KMn,i—l)-

We use the terms asymptotic regression estimator, AR estimator, and ARE

(X,,):MEM}.

to refer to any element of a sequence so obtained.

We intend to show that for fixed arbitrary ¢ > 1, the AR estimator
has good properties as n — oo. Carroll and Ruppert [7] have proposed a

16



similar iterative estimation scheme for the problem of nonlinear regression
with heteroscedastic error. We hope to show for our problem, as they have
done for theirs, that stopping the procedure after a small number of steps
results in an estimator with reasonable small-sample properties.

In chapter 2, we consider the parametric estimation problem, in which
the parameter space © is a subset of R? for some finite positive integer d.
We discuss the existence, consistency, and large-sample distributions of AR
estimators. Results in this chapter establish the asymptotic optimality of
AR estimators.

In chapter 3, we consider nonparametric AR estimation. We see that
the solution of the corresponding penalized problem is an estimator with
desirable properties. Also, we see that AR estimation provides a unified
approach to a wide class of statistical problems.

In chapter 4, we discuss the practical computational aspects of nonpara-
metric AR estimation. Topics here include discretization, software implemen-
tation, and a reliable data-driven method for smoothing parameter selection.

17




INTENTIONALLY LEFT BLANK.

18



2. Parametric AR Estimation

2.1 General Parametric Estimation

In this chapter, we consider asymptotic regression estimation in the case
of a finite-dimensional real parameter space. In this section, we define the
parametric AR estimator and its associated optimization problem. In sec-
tion 2.2, we present and discuss the main results concerning the consistency
and asymptotic properties of the AR estimator. Sections 2.3, 2.4, and 2.5
describe the application of AR estimation to some standard statistical mod-
eling situations. Section 2.6 contains technical material including the proofs
. of the theorems in section 2.2.

To cast the AR model and estimation brocedure of section 1.2 into the
parametric setting, we suppose, as always, that X,, is a sequence of stochastic
processes with sample paths in a space 8 of functions defined on a domain
I. In this chapter, we denote the true parameter value by 7 and assume that
7 € © C R? where d is a positive integer.

Now let A = A, be a Gaussian process with mean value EA = 0 and
continuous positive-definite covariance function E A(s)A(t) = K,(s,t), and
let M, be a deterministic function on I. Next, define 4, , = /n(X, — M;)
and suppose that '

A -5 A, as n— 0. (2.1)

In order to define the AR estimator, we need to identify certain spaces, op-
erators, and norms. So for any 6 € ©, let Hy be the RKHS with reproducing
kernel Ky, inner product (-,-),, norm || - ||0,'and point evaluation functional
representers Ky;. We require that, while the norms may depend on 8, the
underlying spaces remain constant. That is to say, Hy = H, = H for all
6 € ©. Furthermore, suppose that My € H for each § € ©. Let the bilinear
functional ¢ : 8 x H — R satisfy

¢6(Z, Ke:) = Z(2)
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for each t € I. Since @o(f,g) = (f,9), if f € Hg, this map is given by the
inner product when both of its arguments lie in Hp.

Let v be a fixed element of ©. The probability density functional for a
Gaussian stochastic process Z with mean Mj and covariance K., with respect
to a mean-zero Gaussian process having the same covariance is

i) (2) = exp 8,2, M0) - H ). (2.2)

With n € N and X, both fixed, we take as an estimator of 7 any 7, € ©

satisfying ( , 0.6)

dP(, Tn) {d? 7,6 }

———=(X,;) =su X,):0€0;.
dP(v) (%n) = sup dP(v) (Xa)

We now define the AR estimator sequence.

Definition (Parametric AR Estimator). For fixed n, X, and 7,0 € ©,
the recursive sequence of AR estimators (7,0, 7,1, Tn,2, - - - ) is defined for all
i € Nby

dfP(Tn,,'_l, T,-,,,') d?(’l’n,,'_l, 0)

WPrney) m) = S“p{ P (rart)

We occasionally write this as 7, ; = Sp(7s,i—1) for notational convenience.
~ Maximization of the likelihood ratio (2.2) is equivalent to minimization
of

(X,,):OG@}.

- dP(v,6)
Jn,‘)’(o) = —"1 dfp( )

which can be rewritten as \
Tns(0) = =8y (My + xAnrs My) + 311Mo]2
= %“Moll?y - <M'ra MO)-y - %qsv(An,n MO)
= 31Mo — M|} — SIM S — Jrby(Anr, M)

—mr (Xn) = ¢7(XmM9) + 2”M0”7’

It is convenient to define

Ly (0) = Jny(6) + %”M‘T”?y
= %”MO - Mr”: - %ﬂf"y(An,nMa)-
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Of course, the ARE can also be characterized as the minimizer 6 of the

functional Ly ,(6). We refer to L, () as the AR objective functional.

2.2 Properties of Parametric Estimators

In this section, we present and discuss the main results on the properties
of parametric AR estimators. Technical details and proofs are deferred to
section 2.6. Under moderate assumptions, Theorem 2.1 establishes the con-
sistency of the first-stage (¢ = 1) estimator in the ARE sequence. This
estimator is computed using an arbitrary guess for the covariance parame-
ter. With stronger assumptions, Theorem 2.2 establishes consistency in the .
regular case. In this context, regular means that an estimator is obtained as
a zero of the derivative of an objective functional. '

Theorem 2.1. Consider the model of section 2.1. Suppose T is the true pa-
rameter value. Fizy € ©. Assume that the following conditions are satisfied.

(1) © is compact.

(2) The map 6 — Mjy is continuous, so that L, () is continuous on 6 € ©
for all n.

(8) For any é > 0, inf{||Mp — M,|2: |0 — 7| > &} > 0.
(4) sup{|¢y(Ans, Mp)| : 6 € ©} = 0,(n!/2) as n — oo, so that

sup{|Ln,() —EL,,(0)]: 0 € ©} 230 as n— .

Then any sequence of AR estimators {7, }nen given by
L, (1) = inf{L,,(0) : 6 € ©}

has the property
To =T GS T — 00.
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In what follows, the dot denotes differentiation with respect to the pa-
rameter. With stronger smoothness conditions, we get:

Theorem 2.2. Consider the model of section 2.1. Suppose T is the true pa-
rameter value. Fizy € ©. Assume that the following conditions are satisfied.

(1) © is compact, and T is in the interior of ©.

(2) My is 0-differentiable and My € H, so that Ly, () is 8-differentiable
on © foralln.

(8) For any & > 0, inf{||Mp — M| : |6 — 7| > 6} > 0.
(4) sup{|¢y(Anzry Mp)| : 6 € O} = 0,(n'/?) as n — o0, so that

sup{|Ln,(8) —EL,,(0):0 € ©} 250 as n — oo.

Then, there is a sequence of AR estimators {T, }nen satisfying both Ln,7(7,,) =
0 and
T =T as n — 0.

We now state two theorems on the asymptotic distributions of AR esti-
mators. We consider the case of a sufficiently differentiable objective with
a unique minimum. Of course, these conditions can be weakened in many
ways. We restrict our attention to the univariate parameter case, with d = 1.
The arguments can easily be generalized to the vector case. Theorem 2.3 es-
tablishes the asymptotic normality of the first-stage estimator. Theorem 2.4

_establishes the asymptotic optimality of AR estimators for ¢ > 1. The oper-
ator Sg, which appears in the statements of these two theorems, is defined
in Lemma 2.8 of section 2.6.1.

Theorem 2.3. Consider the model of section 2.1. Suppose T is the true pa-
rameter value. Fizy € ©. Assume that the following conditions are satisfied.

(1) © is compact, and T is in the interior of ©.
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(2) My and L, (0) are twice 0-differentiable on ©; and My, My, and M,
are in H, for all § € ©.

(8) The maps 6 — M,, 6 — My, and 0 — M,, are coﬁtinuous; i.e.,
| Mo — Mplly + || Ma — Mglly + || Mo — Mglly — 0 if o — 8| = 0.

(4) Lz3(0) = {m}.
(5) sup{|¢,(Ar, My — M,)| : |0 — 7| < €} = Op(1) as e = 0.
(6) For sufficiently small e > 0, as n — oo,

ge(An,'r) = st;p {|¢7(An,‘r’ MB - M‘r)l . |0 - TI < 5} = Op(n1/2)-

Then the AR estimator sequence {T,}nen has the property

[ESAL:

\/ﬁ-(f,,—'r)iwrvN(o,, .
| M-|14

) as n — oo.

One consequence of the preceding theorem is that
Th =T as 1 — 0o, _
so that the first-stage AR estimator is weakly consistent. Also, in the event
that v = 7, it is easily shown that

Va, M, -1 1
Var 7, = rq.5,(4,)= = —
(| M- |2 |M-|2  Var ¢.(M;)
This is the Cramér-Rao lower bound, assuming its existence. In this case, 7,
is a best asymptotically normal estimator of 7.

With some additional assumptions on the uniform behavior of the para-
metric function family and the stochastic process, trivial modification of The-
orem 2.3 yields the following result on the asymptotic consistency, normality,
and optimality of the AR estimators for i > 1.

Theorem 2.4. Consider the model of section 2.1. Let N(1) C © be a neigh-
borhood of T. Suppose that the following conditions are satisfied.
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(1) For fized X € 8§ and F € H, the map v — ¢,(X, F) is continuous on
N(1). -

(2) For fized F and G € H, the map v+ (F,G), is continuous on N(7).

(3) The maps 6 — My, 6 — M,, and § — My are continuous for § € ©
uniformly for v € N(7); i.e., if |a — B| = 0 then

sup {|| Za — Zplly : v € N(7)} = 0
for each Z € {M, M, M}.
(4) For sufficiently small e > 0, as n = oo,

9e(Anr) = sup)s%p {|¢.,(A,,,,.,Mg —-M,)|:10-7| < e} = o,(n'?).

YEN(T

Then, for any fized i > 1, the AR estimator sequence {Tni}nen has the

property .
Vi (Tog —T) 2, Y,~N (0,I(r)™') as n— o0,

where I(7) is Fisher’s Information Measure. -

This implies that stopping the procedure at any 7 > 2 gives a best asymp-
totically normal estimator based on X,,. Recall that the likelihood ratio is

A@) = [B5:)(2)|" = exp [t (2,300 - 510412),

and that information is defined using the quantity
% log A(Z) = n |¢,(Z, Mg) — ( My, M .
d

as follows. Let 7 be the true parameter value. Then

E [i log A(X,)

= ] = B, ¢y(Xa, M) = (Mo, BL,) =0

=7
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since E; ¢,(Z, F) = (E; Z, F),.. The information in X, about 7 is defined as

0=T) 2} = Var [d% log A(X,) 0=T] .

See, for example, Kﬁtoyants [36], p. 10. So here we have

I(r)=E [(a‘i log A(X.)

I(r) = n? Var ¢'7(Xm Mr) =n Var ¢7(An,»r, Mr)
~ nVar ¢,(4r, M,) = nHS,,TM.,H:,

in the sense that f ~ g if and only if f/g — 1 as n — co. Thus, the lower
bound for the asymptotic variance of an unbiased estimator of 7 based on

X, is
1

n”S’YTMT”?y,
which we may compére to the asymptotic variance
[1Syr M |13
n|| M- |13

I() 1=

of a first-iteration AR estimator. In the case that v = 7, we simply have

1
nl| M |12

| I(r)'=

which is indeed the asymptotic variance of the AR estimators 7,; for all
i > 1, and of 7,; when 7 0(=7) = 7. v

In the remainder of this chapter, we consider some specific applications
and develop results concerning the limiting (¢ — oo) behavior of the AR
estimator sequence for finite samples. .

2.3 Application to Density Estimation

Here we develop the form of the AR estimator specific to probability density
function (p.d.f.) estimation. The prime denotes differentiation with respect
to t €L.
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Let Z,,...,Z, be ii.d. real r.v.’s on I C R with continuous c.d.f. F =
F, where 7 € © C R? for some feasible parameter set ©. The empirical

cumulative distribution function’
1 n
F.(t) = - ;_1 I(Z; < t)

has mean-value function
E F,(t) = F(t)

and covariance function
C.ov[F,,(s), F.(t)] = % [F(sAt)— F(s)F(t)].

Suppose v € ©. Let X(t) = X;(t) = F,(t) — F,(t), and let Xo(t) be a zero-
mean Gaussian process with covariance function K, (s,t) = 1[F,(s A t) —
F,(s)F,(t)]. We model X (t) as a Gaussian process with mean Fp(t) — F,(t)
and covariance K.

Let H, denote the reproducing kernel Hilbert space with reproducing
kernel K. With the map ¢, : H, = L.(X) given by ¢,(K,:) = X(t), the
required derivative is

dfPl

L) = (X) = exp [¢,(Fs — Fy) — 3| Fy — EJ3],

aslongas Fy— F, € H.,. We use Fy — F, in the likelihood ratio because H,,
consists of functions A on [0, 1] with A(0) = A(1) =

Because K, (s,t) = u(s At)v(s Vt), where u = F, and v = 1 — F,, the
RKHS inner product for an empirical c.d.f. (Brownian bridge) covariance
structure is given by equation (A.2) as

1 72
213 = [ 2L,
Y 7

as long as lim Z (z)? F,(z)™ =0 and lim Z (z)?[1 - F.,(:::.)]“1 = 0. Then the
z z
form of the density functional is

J,(6) = - /(F"_ B - B) /[F‘_ T (2)

26



Some algebra yields

/i 1 FI2 1
J,(6) = — F‘de,.+§ (—P;‘-,)—+-2-.
v Y

In terms of the densities Fy = fy, the AR estimator is that value of 8 which
minimizes i

J.,(9)=-' ;—:an+% L%)—z (2.4)

The asymptotic variance of this AR estimator is

 Var |L.410gf,
Var 6 = [‘f" o ]

nE[f- (4 1ogfe)2]2'

Now we characterize the limiting optimization problem associated with

this AR estimator sequence in the regular case.

Theorem 2.5. For arbitrary fized n, let {0;}icn be the sequence of AR esti-
mators for the parameter T of a random sample density. Suppose the ML and ‘
AR estimation problems are regular. If the AR estimator sequence converges,
so that )

6; >0 as i — oo,

then @ is also the mazimum-likelihood estimator of 7.

Theorem 2.5 states that for density estimation based on F,,, the limiting
AR estimator is the maximum-likelihood estimator.

2.3.1 Type I Censoring

A data set is said to be censored if a known number of observations are
missing from one or both ends of the data range. See David [12]. In the
case of Type I censoring, we observe the data when they are inside a known
range, say [a,b]. If a datum falls outside the range, we know which side it is
on but not what its value is. So the number of observed data values is itself
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a random variable. Formally, we have an underlying sample Yj,...,Y;, from
a distribution with c.d.f. Fy and p.d.f. fy = Fj. However, we do not observe
the Y; directly. Rather, we observe the indicators

-1, Y. <a
=< 0, a<Y;<b
1, ;>0
along with the data
X,- — K 6,‘ =0
‘ not available, ¢; # 0.

The corresponding AR objective functional is based on equation (A.2), as is
the uncensored objective given by equation (2.4). The result is

_ [f . Fa(@Fa(a)  F(b)Fa(®)
A A B X R e X()
1 [ ® (fo)? 4 Fo(a) | Fe(®)? ]
20/ f F,(a) 1-FE\b)]"
A similar construction also works for general Type I censoring, in which
the observable data lie in a union of disjoint intervals. In this case, data are
observed in '

+

(a1, b1] U [ag, b2] U -« - U [a, by),

where a; < by < @z < --+ < bg_; < ax < bg, and data counts are available for
each of the complementary regions (—00, a1), (b1, a2), ..., (be-1,ax), (b, 00).
Note that censoring is different from truncation, in which the distribution
itself is modified and the amount of lost data is unknown. Any c.d.f., say Fp,
can be truncated to the interval [a, b]. The resulting c.d.f. Gy is given by

0, rz<a
Golz) = | Birey a<o<b

1, z>b

28



2.3.2 Example: Linear Density

Let Xi,...,X, be iid. on [0,1] with density function f,(z) b+ 2(1-d)z,
where b € [0, 2]. For fixed f,, the density functional is .

1b+2(1-b)t 1 [p+201 =)
b)=— | ————dF,(t)+ = dt,
Ja(t) ,/0 a+2(1-a)t ()+2/0 a+2(1-a)t
which is quadratic in b. Therefore, the AR estimator, which is the solution
of

minibmize Ja(b) subject to 0 < b < 2,

can be obtained by “clamping” the minimizer of the unconstrained objective
into the feasible region [0, 2]. So if b satisfies J'(b) = 0, then the estimator is

b=2A(0Vb)=min (2,ma.x(0,5)) .

Differentiating with respect to b, we obtain

Y A (1-2t)[b+2(1 -d)]
J,,(b)_—f0 TR 0+ / AT D

The solution of J;(b) =0 is

. 1 |1« 1-2X;
b=m[;;a+2(l—a)Xi_h(a)]’

where

[t 2t(1—2t) . a[2—2a-—log(2 - a)+loga]
L(a) “/ ar2iang®= 201 — a)p

“aear oo (i)]

: 1(1-2t)? 2 —2a —log(2 — a) +loga
I:(a) “f,, a+2(1-a)t dt = 2(a —1)®

|
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The unconstrained minimizer is

R (a—1)3 no1-2X
_ )y 2.5
b a+n[1-a—%log(§—1)] a+2(1-a)X;’ (2:5)

t=1
which is ih fact continuous at a = 1 with
. - 3 < _
limb = 1+;Z(1—2X;) =4-6X.

t=1

On the other hand, the MLE is the solution b, of

n
maximize H[b +2(1 - b)X;] subject to 0<b< 2, (2.6)
i=1
which does not exist in closed form. However, Theorem 2.5 implies that the
solution of (2.6) may be obtained as the iterated solution of (2.5).

We illustrate these computations with a small Monte-Carlo simulation.
For each sample size of n = 10, 100, and 1000, we generated 1000 data sets
with a “true” parameter value of b = 0.333 from the p.d.f. f(z) =b+2(1 -
b)z. The ML estimators, 5,,, were computed using a constrained nonlinear
minimization routine in S-PLUS, operating on the negative log-likelihood.
The AR estimators, b, ;, were computed with a typical initial guess of b, p =
1.0, but occasional initial guesses of 0.5 or 0.1 were required. This happened
more often with the smaller data sets (n = 10) and hardly at all with the
large data sets (n = 1000). Mean-squared errors are presented in Table
2.1. We make several comments. For all sample sizes in this simulation, the
second-stage ARE has lower error than the corresponding MLE. Theorem 2.5
states that b, ; — 5,, as ¢ — oo if the sequence converges. This is true only in
the regular cases, where estimators are obtained by zeroing the derivatives
of objective functions. In this example, the parameter space is constrained,
and sometimes a solution is a boundary point instead of a stationary point.
Note that even for small samples, the second-stage ARE is competitive with
the MLE. '
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Table 2.1. Mean-Squared Error for AR and ML Density Estimation Simu-

lation

estimator | n=10 n=100 n=1000

-~

b, 0.1994 0.02006 0.002187
bn,1 0.1744 0.01981 0.002590
bn2 0.1851 0.01899 0.002177
bn3 0.1934 0.01997 0.002187
bn 4 0.1929 0.01985 0.002187
bns 0.1951 0.02003 0.002187
bn 6 0.1954 0.02000 0.002187
bn,7 0.1965 0.02005 0.002187
bn,s 0.1966 0.02003 0.002187
bn,9 0.1972 0.02006 0.002187
bnao | 0.1972 0.02004 0.002187

2.4 Application to Quantile Function Estimation

In this section, we develop the AR estimator for the parameter of a random
sample probability law based on the quantile function. »

Let Z,...,2Z, be ii.d. real r.v.’s on I = [0,1] with positive density f,
(continuous) c.d.f.

F(t) =Pr[Z < 1],

quantile function
Q(u) = F~Y(u) = inf{t : F(t) > u},
and density quantile function

g=7foQ.
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Diﬁ'erentiéting F(Q(u)) = u yields Q'(u) F'(Q(v)) =1, s0

) = —
Q (u) - g(u)

Relevant empirical functions are the empirical distribution Fy(t), the empir-
ical quantile function

Qn(u) = F ' (u),

and the standardized quantile process
Valu) = VAg([@n(u) ~ QW] = Viiz5rs1@n(u) - Q)]

Under reasonably mild conditions, the asymptotic distribution of V, is Gaus-
sian with mean zero and covariance u A v — uv. So the asymptotic charac-
teristics of Q,, are '

EQ;(v) = Q(u) and
K(s,t) = Cov[Q(s), Qn(8)] = 7 Q'(5)Q(t)(s At — st),
and the asymptotic model is

Xa(u) = Qu(v) = Q(v) + J7 - Q'(v)B(u),

where

Cov[ Xy (u), X5(v)] = :Q'(w)Q'(v)(u Av — wv).
Since the covariance function can be written as
K(s,t) =1Q'(sAt)(sAt) - Q(sVi)(1—s Vi),

the corresponding RKHS inner product is given by equation (A.3) as

ot [ (2]

as long as lim 71 Z(z)?Q'(z)"2 = 0 and :lg_’ni(l —-z) 1 Z(z)?Q'(z)" 2 =0.
In the parametric setting, Q@ = Q, where 7 € © C R? for some feasible
parameter set ©. To set up the AR estimation procedure, fix v € © and let
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X (t) = X1(t) = Qu(t) — Q4(t). Let Xo(t) be a zero-mean Gaussian process
with covariance function K. (s,t) = n1 Q' (s) @, () - (s At — st). We model
X (t) as a Gaussian process with mean Q¢ — Q, and covariance K.

AR estimation of 8 is accomplished by minimizing the functional

o= (452) (%) -3 [[(45%)]

Multiplying this out and discarding terms constant with respect to 6, we

wo=-[(8) @)+ [(3)]"

which is equivalent for the purposes of optimization. To avoid distributional

obtain

derivatives, we can integrate by parts to get
1

[@@)- @8- @8
o \@,) \@) T\, @l "k \@) 9

With appropriate behavior at the endpoints, we have

wo-[[ (&) &2 1E)]

2.4.1 Type II Censoring

Another censoring mechanism is called Type II censoring. Recall (section
2.3.1) in the case of Type I censoring that the observed data are constrained
to a certain known range and that the number of observed values is random.
The situation is reversed in Type II censoring: a known number of data are
excised from each end of the range, and the observed data range is random.
Type I censoring is well suited to AR estimation based on the empirical c.d.f.
F,. In a similar fashion, AR estimation based on the empirical quantile
function @, can be adapted for the Type II censoring model. Parzen [54]
points this out for the special case of location and scale estimation.

Of course, if we know the underlying sample size n and the numbers of
observations n, and n; missing from each end, then we also know the points
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p and q which delimit the domain of the correspoﬁding quantile functions. In
fact, p = n,/n and ¢ = 1 — ny/n. For Type II censoring, the AR estimation
functional based on @, is derived from equation (A.3). The result is

7,(0) = — /,,q ('QQ_Z)' (_37:)’ _ % . Qag;)(g)’;(p) = iq . Qogg(%;(q)

HI@T- B8

2.4.2 Example: Location and Scale Estimation

Here we consider AR estimators based on the empirical quantile function in
the case of location and scale families of distributions. For a fixed density
fo, we have the two-parameter family of distributions

fe6) =21, (24),

o

where 6 = (u,0). In this case, we show that §; = 6; for all i > 1.

Other results (see sections 2.3 and 2.5) seem to imply a direct relationship
between AR estimators and ML estimators. However, based on the work of
Bennett [4], Parzen [54], David [12], and others, it is known that 6; need not
be the MLE.

To express the location and scale problem in terms of the quantile func-
tion, we specify a fixed quantile function @, and a two-parameter family of
candidate quantile functions

{a+bQ,:a€R, b>0}.

For fixed v = (a,, b,), we have Q,(u) = a, + b,Q,(u), and with 8 = (a,b) we
have Qq(u) = a + bQ,(u). The AR estimator 6 is the minimizer of

0=~ [ (5282) (&) 1/ (:22)]
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or, equivalently, of

1 ! ! 1 2
o--[ (%) (@) L [2*)]
0 Qo Qo 2 0 Qo
Thus, the AR estimator is independent of choice of (a,, b,).
Let (z,y) = fol (z/Q.) (y/Q.)', and define the matrices

— (1’ Qﬂ) n = (1’ 1) <1’ Qo)
©= [(Qo,Qn)} and R ,[(LQO) (Qo,Qo)}'

Then we have

J(e) = —a(l, Qn) -b (Qm Qn) + % (0'2 (1,1) + 2ab <1a Qo) + b (Qos Qo))
=—67C + }6"R 9,

so the AR estimator 8, which is the minimizer of J(6), is given by
§=RC.
Explicitly, in terms of the components, the estimator is
-1
ol _ [y @we)]" [@aew

|b (1,Q0) (Qos Qo) (Qos @n)
To modify the location and scale problem for Type II censoring (discussed
in section 2.4.1), the appropriate inner product is

o= (7) (&) +3Gep -0

The resulting estimator is the one obtained by Parzen [54].

2.5 Application to Poisson Process Intensity
Estimation

In this section, we develop the AR estimator for the intensity parameter of
a completely observed Poisson process with finite mean measure. Again, the
prime denotes differentiation with respect to ¢t € L
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" The RKHS inner product for a Poisson process (Wiener process) covari-
ance structure, given by equation (A.1), is

1 1\2
ot = [ G-,

as long as lim G(z)? K(z)™! = 0. Here, the map ¢ is
&

1 Gf
¢K(G)= A T{TdN,

and the AR density functional for a Poisson counting process with mean G
and intensity g is then

2
1 [ ()

96
J,(@)=— | —dN + -
,(6) o 2/ g,

We now characterize the limiting optimization problem associated with
this AR estimator sequence in the regular case. The following result is the
Poisson process analogue of Theorem 2.5.

Theorem 2.6. For arbitrary fized n, let {6;}icn be the sequence of AR esti-
mators for the parameter T of a Poisson process mean measure. Suppose the
ML and AR estimation problems are regular. If the AR estimator sequence
converges, so that

6; > 6 as i — oo,

then 8 is the also mazimum-likelihood estimator of T.

In other words, if the AR estimator sequence converges (for any fixed
value of n), then it converges to the maximum-likelihood estimator.
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2.5.1 Example: Exponential Intensity

Consider a Poisson process on [0,T] with intensity function A(t) = ae™™
The density functional is

J(a,b):-/oTa‘:e _dN(t) + 1 /OT_(ﬁ?i’f)__dt

T
— _E - e_(b-bo)ti + a_2/ e—(2b—bo)t dt
Qo ‘_1 2a0
= e~ (b—bolts 1 — e~T(2b—bo)
; 2ao(2b bo) [1-e P

as long as 2b— by > 0. To accomplish the optimization, we differentiate with
respect to a,

(_ilI_ = __1. - e—(b-bo)ti + a [1 — e—T(zb_bO)]
ao(2b - bo) ’

and set dJ/da = 0 to get

2b—b LA
a=——_9 o Z (b=bo)t; (2.7)

— —T(Zb—
e =1

Substituting, we have

2
_ 2b — bo - —(b=bo)t; 1
J = ag [1 — e~T(2b-bo)] [Ze ’ —1+3 [ — e-T@—5)] | °

i=1

With T — 00, this becomes

2
__2-h 3 =(b—bo)t:
J= 22 [Z e .

i=1

So the AR estimator b is the minimizer of

J(b) = (bo — 2b) [zn: e‘(b—bo)ti] :

=1
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and we recover a from equation (2.7).
n
a=(2b—by) ) e bk,
i=1

On the other hand, the likelihood functional is

- T T
L=/ log)\dN—/ A
0 0

n T
= Z(loga, — bt;) — a/ e~ dt
0

i=1

n
=nloga—bZt,-+%(e"w— 1).

=1

So, for large T, we have

n
L=nloga—bZt;— %.

=1
The derivative with respect to a is
dL n 1
da a b

so that dL/da = 0 if and only if a = nb. Substituting, we obtain

n
L =nlognb - bZt; —n.

i=1

Now,

dL n ¢

r i
and dL/db = 0 if and only if b= = n~1 Y7 ; t; = {. Thus, we finally have the
ML estimators

2

o - n . -

a= 2 =nf? and b= —=1
i=1 i ) =1 bi

-1
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2.6 Technical Details
2.6.1 Distributions of Functionals

The following facts enable us to calculate the asymptotic distributions of
functionals that arise in the course of the large-sample analysis of the AR
estimator. Here, we make the dependence of ¢ upon the process explicit, as
in section 1.4.

Lemma 2.7 is a standard result in Hilbert-space time-series methods.
Lemma 2.8 is nonstandard, but required in our applications to characterize
the behavior of the map ¢ when the reference covariance structure is different
from the true covariance of the process X,,.

Lemma 2.7. Let X be a stochastic process with sample paths in 8, mean-
value function M, and covariance function K. Let Hyx be the RKHS with
reproducing kernel K. Assume that M € Hyx. Let ¢ : Sx Hx — R be a
bilinear functional with ¢(Y,K;) =Y (t) for allt € I and Y € 8. Then, for
all f € Hg,

E¢(X,f) = (M,f) and Var ¢(X,f)= |||

Lemma 2.8. Let X be a stochastic process with sample paths in 8§, mean-
value function M, and covariance function K, under probability law L, for
z € {a,b}. Let H, be the RKHS with reproducing kernel K,. Assume that
M, € H,. Let each bilinear functional ¢, : 8 X H, — R satisfy ¢,(Y,K,;) =

Y(t) forallt € I and Y € 8. Suppose that H, = Hy, = H, that the linear

operator T = Ty, on H given by T(Ky) = Kg is bounded, and that the linear
functional E ¢p(X,-) on H is bounded. Let S = Sy, be a square root of T.
Then under law L, for all f € H,

E¢y(X,f) = (Ms,f), and Var (X, f) = |Su (3.

Up to this point, we have not been specific about the definition of con-
vergence in distribution for random functions. There are several different
general approaches. See Billingsley [5], Shorack and Wellner [63], and the
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references contained in both for discussions of the convergence of probabil-
ity measures on metric spaces. According to Pollard [56], for example, the
typical metric space setup is as follows.

There are an implicit underlying probability space (2, F, Pr),
and a function space 8 with o-algebra A and metric . Always,
A C B4(8), the Borel o-algebra generated by the 5-open sets of
8. A usual choice is A = BY(8), the o-algebra generated by the
d-open balls in 8. The random elements Z : 2 — 8 are then the
F /A-measurable functions. Equip the reals with the usual Borel
o-algebra B. Let f: 8 — R be bounded, d-continuous, and A/B-
measurable. Then, Z, -2 Z in 8 means that f(Z,) -2 f (2)
for each such f.

For a different (metric-free) approach, see Kallenberg [30], Karr [31], and
their references. In any case, however, the useful and practical application
of convergence in distribution can always be described as:

Given a sequence Z, of random elements taking values in
a space 8§ and a functional f : 8§ — R, one seeks to establish
conditions that imply that the image of f converges in (one-
dimensional) distribution in R; i.e.,

F(Z)) -5 f(Z2) as n— 0. (2.8)

In general, this can be accomplished by identifying an appropriate
mode of convergence in distribution in 8; i.e.,

Z, % Z as n—o oo, (2.9)

and then showing that f belongs to a class of functions for which
(2.9) implies (2.8). \

We are not concerned with the theoretical details but need only consider the
practical use of the technology, since our interest is in the application of the
AR concept to specific stochastic processes X,.
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Therefore, throughout this work we assume that the convergence in dis-
tribution of the stochastic processes specified in statements (1.2) and (2.1);
ie.,

A 25 A, as n— oo, (2.10)
implies convergence in distribution of the functionals
¢r(Anry G) -2 6,(4,,G) as n— o0 - (2.11)

for any G € H,.

While the manner of convergence in (2.10) for each of the processes we
consider may be different (e.g., in the metric space setting, the o-algebra A
and metric § are specific to the application), statement (2.11) holds nonethe-
less. |

Now we consider the distribution of the limit ¢,(4,,G) in (2.11). It is
easy to show that this quantity has a normal distribution. This follows from
the fact that the set {Yr 0K, :neNt el ace R} is dense in H,
upon consideration of a Cauchy sequence. |

The large-sample properties of AR estimators developed in this chapter
are determined by the asymptotic behavior of &~ (An,r, G) for various values of
G. In particular, suppose that My, My, and M, lie in H, for all § € ©, where
the dot denotes differentiation with respect to 6. In light of the previous
development, the asymptotic distributions of functionals of interest are

b2(An.rs Mo) = o (Ar, My) ~ N(0, 1S, My 2),
¢'7(An,‘r’ MG) "d_> ¢7(Ar1 MO) ~ N(O’ ”S'VTMOH?;)’ and
b1(Ansr) M5) = 6 (Ar, ¥g) ~ N(0, Sy ) 2).
The AR objective functional and its f-derivatives are
n7(9) Ms — M5 — J=¢y(An,r, M),
n'y 0) <M0 - M‘ra M0> - '_¢7(A ,T7M9)1 and
Lnr(6) = (Mo ~ M, Blo)_+ 1302 = Jxs(An,r, ).
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The asymptotic distributions of these quantities foilow from
V- [Lny(6) = 3|Mg — M, |3] = —¢(An,r, M),
Ja- [L,,ﬂ(o) - <Mg - M,,M,,)q] = —3(Anr, M), and
VA [Ea®) = (M = My, )~ 18812 = 61 (A, ).
In particular, with § = 7, these become
VLo (1) = —¢y(An;r, My),

\/ﬁLg,q(T) = "‘¢7(An,-r, M‘r)’ and
V- [Ba(r) = IV IE] = =@s(An s, IE2).

More details about the behavior of functionals of the observed process and the
AR estimators are developed as needed in the proofs of the lemmas, theorems,

and corollaries of chapter 2. These proofs are presented collectively in the
next section.

2.6.2 Proofs

Proof of Theorem 2.1. Since Var L, ,(f) — 0 as n — oo, Chebychev’s in-
equality gives convergence in probability of Ly ,(6) to its expectation 21 My —
M;|]2. In particular, Ly, () 2, 0asn— oco. Now fix § > 0 and let

e =inf{E Lny(0) : [0 — 7| 2 o} .

Pick any a < &/2. Define the events 4y = {|m — 7| < 4} and A, =
{Ln~(7s) < a}. For large enough n, we have
Pr(A;AS) = Pr(Lpq(Ta) < o and |1, — 7| > 6)
< Pr (5up{|Lny(6) — ELoy(6)] : 10— 7| > 6} > )
< Pr(sup{|Ln(6) —E L,,(6)| : 6 € ©} > )
<a '
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and
Pr(A;) =Pr(Lpy(ma) < @) 2 Pr(Ln,(r) <a) 21-c.

Partitioning on Ay, we have
l-a < PI‘(Al) = PI‘(Ale) + PI'(Al 3) < PI‘(A()) + a.

Putting this together, we have Pr(4y) > 1 — 2a, as required. O

Proof of Theorem 2.2. For small enough 4, the ball {6 : |6 — 7| < &} lies
in the interior of ©. So any minimizer 7, of L,, with |7, — 7| < § also has
L(7,) = 0. The conclusion follows by Theorem 2.1. a

Proof of Theorem 2.3. Sen and Singer [61] use the following approach
to prove a theorem about the properties of maximum-likelihood estimators.
They attribute the technique to Le Cam [42], Hijek [25], and Inagaki [28].

Fix an arbitrary K € (0, 00), and for |u| < K consider the Taylor’s series
expansion of Ly, about 7.

Lny(T + J2t) = Lny(7) + 32 (uw),
where |
A(W) = VruLny (1) + 2u?Ln () and  7n.(u) € (1,7 +n"20),
$0 that |7, — 7| < n7Y2|u| < n~Y2K. Let
Zp(u) = inﬂ(Tn*) - f/,,,,(T) = By(u) + Ca(u) — nhl/an(u)a
where '
Bn(u) = <M‘rn- - M‘T’M‘Tng> )
. . ’7
Cn(u) = [ My, |5 = | M]3, and
Dn(u) = ¢7(An,'r, M-rn. - MT)
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Then we have
An() = VAL (r) + Ju2E o (7) + [B,,(u) + Co(u) + \-l,gpn(u)] .

For any € > 0, fix an ny > K?/e? and note that if n > ng, then n™/2 K < ¢
and |7, — 7| < €. Therefore, for all sufficiently large n, we have

sup{|Ba(e)] o] < K} < —SI;P{KMo—Mr,MoL Jo-r <e}

< sup { 1Mo ~ Ml - |boly 16~ 7] <

Since the continuity assumptions imply that B, — 0 as £¢ — 0, we have
|Ba(u)] == 0 as n = oo uniformly in |u| < K. Likewise, for all large enough

n,

sup{|Ca(a)] : [u] < K} < Ce = sup { [|M6ll3 — 13 < 10 - 7l < e

y
and C; — 0 as ¢ = 0. Therefore, |Cy(u)] = 0 as n — oo uniformly in
|u| € K. Again, for all sufficiently large n,

sup{|Dn(u)| : |u] < K} < S‘;P{|¢7(An,nM9 - M‘r)| 110 — 7| < €} = ge(4n7r)
u ,

Since ge(Anr) = 0p(n*/2), we have sup,{|Ds(u)| : |u| < K} = 0,(n'/?), and
therefore sup,{n=1/2|D,(u)| : |u| < K} = 0p(1) as n — oo. Smce we also
have L, () 2+ ||MTI|,2,, we may conclude that uniformly on |u| <

An(¥) = VL (1) + 26%| M |2 + 0p(1) as n — co.
With uy = —-\/ﬁi,,,,(r)/”M,.”?y and ¢ = ||MT”,";/2, we can write
An(u) = c(u — up)? — cu2 + gn(u),

where sup{|g.(v)|: Ju| < K} = 0 as n = oo.
Define the events A = |yg| < K — a and B = |u, — 4] < o. For
any small @ > 0, choose K and N large enough so that Pr(4) > 1 -«
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and Pr (sup{|gn(u)| : |u] < K} < 1ca?) > 1—aif n > N. Let A(us) =
inf{A,(u) : |u| < K}. Conditional on A, we have

B < A\, (ug) < inf{Ap(u) : |u — up| > a}

= —cug + sup |gn(u)| < co® — cuf — sup |gn(u)|
. lul<K lul<K

<= sup |gn(u)| < ica?;
jul<K

and since Pr(B) > Pr(ANB) = Pr(A) Pr(B|A) > (1-a)?, we have Pr(B) —
1 as a — 0. Therefore u, — up —— 0 as n = 00. But 7, = 7 + n~/24,, so
\/ﬁ(Tn—T)+-\/ﬁL—.n’7§T—) 2,0 as n— .
113

Since ‘
\/ﬁLﬂ,V(T) = —¢7(A,,,.,-,M.,-) “d" "¢'7(A‘n Mr) ~ N(07 ”S‘YTMT”?y)

as n — 0o, the result is established. O -

Proof of Theorem 2.4. By Theorem 2.3, we have

1 0r M2,
1313

™,0

\/7_1-(7,,,1—7)—'1-)Yl~N(0, ) as n — 0o,

so that, in particular, 7,, 2y rasn > oo Thus, for arbitrarily small
B > 0, there is an N such that if n > N then Pr(r,; € N(7)) > 1 - 3.
Now let ¢ = 2. Fix an arbitrary K € (0,00). Proceeding as in the proof of
Theorem 2.3, we can write the Taylor’s series expansion of L, , about 7
for |u| < K.

Ln oy (T+ %“) = Lnr,, (7) + '}E’\n(u)a

where

An(u) = \/ﬁuLﬂ,Tn,l (r) + %uziﬂ,fn,l (Ta)
= VL, (7) + §0°Ens (1) + Ju* [ Bu(u) + Calw) + J2Da(w)]
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in which
B, = (M, — M, M‘rn. ’
(w) = (M., ).
Cnl) = ¥ [ = B, 20
Dﬂ(u) ¢Tn 1 (A n,7I Tn. MT)’

With Tn () = Tne € (7,7 + n~Y2u), s0 that |7 — 7| < n7Y2|u| < 72K,
For sufficiently large n, we have
:)0—-7| < e}

sup{|B,.(u)| lu| < K} < sup {‘(Mg - M,, M9>

< sup {115 = Mrlly - |Wholrs < 18— 7| <}

Tn,1

and therefore with

B, = sup sgp{nMo—Mlh o]l : 10— 7| < €}

YEN(7)
we have

P sup{[Buu)] : [l < K} < B.] > 14,

The continuity assumptions imply that B, 3> 0ase — 0, so we have

|Ba(u)] — 0 as n — oo uniformly in |u| < K. Likewise, for all large
enough n,

sup{|Caw)] : [u] < K} < sup { |I0I7, , ~ WA, | : 16~ 7] <}
So with

Ce=_sup sup {4l — 19 5 : 16 - r<e},

YEN(7)
we have

Pr [sup{(Co(u) sl < K} < O] > 15,

The continuity assumptions imply that C; —+ 0 as ¢ — 0, so we have
|C(u)] £ 0 as n — oo uniformly in |u| < K. Again, for all sufficiently
large n,

sup{|Dn(u)| : |u| < K} < sgp{|¢r.,.1(An,nMo —M;)|: 16— 7| <€,
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$0
Pr |sup{|D,(u)] : |u| < K} < g:(4ns)| >1-8.
Since ge(Anr) = 0p(n'/?), we have sup,{|Dn(v)| : [u| < K} = 0,(n'/?), and

therefore sup, {n~/2|Dy(u)| : |u| < K} = 0p(1) as n — co. The 7-continuity
of ¢, implies that

¢‘r,.,1 (An,'raF) - ¢T(An,'r,F) 'l') 07
and it is basic that
%¢T(Aﬂ,'l” F) L) 0
for F = M,, M,, or M,. Therefore,
f'71,1".,1 (r) - “Mr”2 = _%d’mJ (An,'r,M'r) -5 0,

Tn,l

-and we may conclude that uniformly on |u| < K,

An(u) = \/ﬁuLn,fnyl(r) + %uz”M,.Il2 +0,(1) as n — oo.

Tn,1
* Since Ly,(r) = —n~2¢.(Ap s, M,), and (., )., is 7y-continuous, we in fact
have
An() = VruLn-(7) + Lu?|| M, |2 + 05(1) as n— oo
uniformly for |u| < K. As in the proof of the previous theorem, we obtain
\/'r—z('r,,,z-—'r)+—\{—7—1L."—’T£IZ 250 as n— o0
1M |2
Since
VLo (r) = —br(Anr, My) = =60 (Ar, My) ~ N(O, || M 12),
we have established that

d 1
N(Tpe—T7) — Yo~ N|[0,——— | as n— o0.
Valtna =) 522 (0 )

By induction, we may conclude that

\/E(T,,,,-—T)-—QY;NN(O, ) as n — 0o

|| M2
foralli> 1. ]
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Proof of Theorem 2.5. If the AR estimator sequence converges to some
value 8, then 6 is a fixed point of the operator S, defined on page 20. So
Sp(6) = 6, which means that

d
—Ji = 0.
i 6(€) o
Differentiating, we have
d d
d aefe TegeTe
—J —=—dF, + .
3 o) = 96 J. Te
Substituting £ = 6, we get

o
I

f CRAL =) 8 +/d§ Fele—s

__ / 22 108 fle g dFs + [ 3 Hlew
i [ /1ogf€dF +/fe]
di [ /longdF +1]

= T /longdF,,.

¢=0

¢=0 /

Therefore, 6 solves ‘
maxi{mize / log fe dFy,

which characterizes the maximum-likelihood estimator of a random sample
density parameter. ' ]

Proof of Theorem 2.6. If the AR estimator sequence converges to some
value @, then @ is a fixed point of the operator S, defined on page 20. So
Sn(6) = 0, which means that

—J = 0.
& 163, s
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Differentiating, we have

d d
d ac9¢ / 9¢ ag 9¢
—Jy(€) = — / ——dN+ | ——.
d¢ (&) 96 9e

Substituting £ = 0, we get

d
3 9¢le—o / d
0=— | £ N+ | = ge|._

/ 96 d¢ le=o

d d

=d% [—/logyst+/olge]

_ EdE [_ / log ge dN + Gg(l)]

¢=0

£=0

Therefore, 6 solves
maxifmize / log ge AN — G¢(1),

which characterizes the maximum-likelihood estimator of a Poisson process
intensii;y parameter. . O

Proof of Lemma 2.7. See Parzen [51]. : 0

Proof of Lemma 2.8. We suppress the dependence of ¢ on § and write
¢(f) for ¢(X, £).

Since E ¢ is a continuous linear functional on H, there is a unique s € H
with E ¢o(f) = (s, ), for all f € H. In particular, E ¢y(Ky) = (s, Kis), =
s(t). On the other hand, we have E ¢,(Ky:) = E X(t) = M,(t). Therefore,
s5(t) = M,(t), and E @p(f) = (M,, f), as required. '

Consider the bounded linear operator T = T, on H given by (Tf)(z) =
(f) Kaz)y» and the associated bounded bilinear functional B(f, g) = (T'f, g),.
Note that '

| (TKut)(z) = (Koty Kaz)p = Koz (t) = Kar()-
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Also,
B(Kssy Kit) = (TKpay Kun)y = (Kas, Kut)p = Kas(t) = Ka(s, ).
But since
Ka(s,t) = Cov[X(s), X (t)] = Cov[gs(Kbs), $o(Ka)],

we have in general B(f,g) = Cov[ds(f), #s(9)] and B(f,f) = Var ¢u(f).
Since B is positive definite, symmetric, and self-adjoint, we know that T has
a positive definite, symmetric, self-adjoint square root S = Sp,. So we can
write (T'f, f), = (Sf,Sf), = ||Sf||, whence in fact

Var ¢s(f) = |Ssafll} = ({f+ Ka())ys F()),

for all f € H. a
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3. Nonparametric AR Estimation

In this chapter, we consider asymptotic regression estimation in the setting
-of an infinite-dimensional real parameter space. As one would expect in this
case, even for a fixed initial guess 7, the minimization problem either has
no solution or results in an estimator that is not smooth enough. In other
words, the problem is ill-posed. However, we show that the technique of
regularization, or penalization, can be applied to these problems to produce
estimators that have desirable asymptotic properties.

We address nonparametric estimation in the context of specific applica-
tions. Basic density estimation is the subject of section 3.1. Density estima-
tion for inverse problems is considered in section 3.2. Section 3.3 contains
a short discussion of the application of ARE to Poisson process intensity
estimation. Proofs are deferred to section 3.4.

3.1 Density Estimation

Let X;,...,X, beii.d. random variables on I C R with c.d.f. F, and p.d.f.
F) = f,. Let h be a p.d.f. on I. In what follows, f means fI. With the

objective functional
* 1 2
Jn,h(f)=_/£an+§/%

and constraint set € = {f : f > 0, [ f = 1}, the natural nonparametric ver-
sion of the AR density estimation problem is

minifmize Jun(f) subject to fe LyNC. (3.1)

However, this problem is ill-posed in the following sense.
Theorem 3.1. Problem (3.1) has no solution.

In the proof, we construct a sequence {gn, }3_, in LoN€ with the property
that J*(gn,) = —o0o0 as m — oo, thereby showing that J* is unbounded.
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In fact, Gm(t) = [, <t gm(z) dz converges in L, to Fy, the empirical c.d.f.
Since the optimization problem (3.1) has no solution in Ls, it is useless for
estimating f, and its derivatives.

The same thing happens when one attempts to extend maximum likeli-
hood density estimation by relaxing the parametric restriction. The problem

n .
max}mize H f(X;) subjectto fe L,NC (3.2)
=1
has no solution. The proof of this fact utilizes the same construction as
Theorem 3.1. See Thompson and Tapia [73].
One approach that has been exploited is to replace problem (3.2) by an
approximate version that has a useful solution—namely,

ma.x}mize ﬁ f(X;) exp[—nowv(f)] subject to fe€ LyNC. (3.3)

i=1 -

Note that equivalent formulations of problems (3.2) and (3.3) are

m_inifmize - / log f(z) dF,(z) subjectto f€ L,NE

and , |
minifmizel - / log f(z) dF,(z) + aw(f) subject to f € LyNE,

respectively. .

The functional v, known as a penalty functional, is chosen to give larger
values when f is “less smooth.” Solutions to (3.3) are called mazimum pe-
nalized likelihood density estimators. “The parameter o is a positive real
number. Typically, when a — 0 at some rate as n — oo, one obtains a se-
quence of estimators with good asymptotic properties. The literature is rich
with references to work in related areas, such as regularization in Tikhonov
and Arsenin [74]; maximum penalized likelihood density estimation in Good
and Gaskins [21], de Montricher, Tapia, and Thompson [13], Silverman [66],
and Thompson and Tapia [73]; smoothing splines in Wahba [76], [79], and
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-Gu [23]; nonparametric estimation and regression in Stone [70], Klonias [34],
Eubank [16], Gu [24], and Hirdle [27]; and inverse problems in O’Sullivan [50]
and Cox [9] .

We can apply the method of penalization to problem (3.1) and obtain
a related problem that does have a well-behaved unique solution. We now
formulate the penalized problem.

Let Xi,...,X, beii.d. random variables defined on a bounded domain
I C R, with c.df. F, and p.d.f. f, = F,. The function A is a smooth p.d.f. on
I. Denote By D a linear differential operator of order p > 1, with no constant
term, defined on a suitable domain with appropriate boundary conditions.
We refer to the positive real constant o as the smoothing parameter. Using

v(f) = % f (D}{ )2, : (3.4)

we define the penalized AR density estimation functional to be

the penalty functional

J,,,,(f)=—/idp +1/ﬁ+au(f). (3.5)
' R" " 2/) h
The corresponding single-step AR density estimation problem is then

minifmize Jnn(f) subject to feIH,NEC, (3.6)

and its solution f = f, satisfies
Tan(f) = inf {Jon(f) : f € H,NE}. (3.7)

For fixed n and fn,o, the recursive sequence of AR estimators ( f,,',o, f,,,l,
Ffag, --.) is characterized by

T fuges (Fog) = inf {Jn,f,.,.--l(f%fef*fpﬂ@}- (39

In order to establish the existénce and uniqueness of the solution of prob-
lem (3.6), we exploit the inner-product structure implicit in the form of the
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‘penalized objective functional (3.5). Specifically, the deterministic part of
Jnn(f) is a quadratic form that arises from a Sobolev space norm. Note also
that these are the penalty functionals that generate smoothing splines.

In our setting, the Sobolev spaces H, are Hilbert spaces of functions that
have (Lebesgue) square-integrable p™ derivative.

H,={f: f® € Lyn D}, ‘ (3.9)

where the domain D formally incorporates both the function support and
“also the boundary conditions appropriate to the application. Since domains
and boundary conditions are application-specific, we generally suppress their
explicit formulation and simply remember that they are a required element
of the problem statement.

Some basic references for Sobolev spaces and optimization are Adams [1],
Atteia [3], Kufner [35], and Luenberger {46]. However, we only need a few
facts about Sobolev spaces and a theorem of Thompson and Tapia in order
to give the existence and uniqueness statement. The standard Sobolev inner

P
13 => [ 179
=3 [159)

In our applications, a natural norm for X, is given by

110 = [ 72+ [@17.
Weighted Sobolev spaces incorporate a weight function into the integral def-
inition of the inner product, e.g.,

2. =Y / 1FO@) w(t)dt

=0

112 50 = / P w(t)dt + [ (DA®) w(t) d.

Recall that two norms || -||; and ||- || on a space § are equivalent if there are
positive real constants a and b such that

product is given by

or

allzlly < [lzllz < bllelly, Vo €S8,
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in which case the two norms in question give rise to the same topology, or
notion of convergence, on 8.

For certain classes of weights w, the corresponding weighted spaces coin-
cide with the unweighted spaces. This occurs, for example, if there exist §
and A with 0 < § < w(t) < A < oo for all ¢, in which case it is also obviously
true that the weighted and unweighted norms are equivalent. Unweighted
spaces are of course weighted with w = 1. These various norms are related
in this context by the following useful fact.

Lemma 3.2. Let
Hp={f:f? e L)},

where I C R is bounded. Suppose there exist § and A such that w: I — R
satisfies 0 < 0 < w(t) < A < oo for allt € I. Suppose D is a linear
differential operator of order p > 1 with no constant term. Then the following
quadratic forms engender equivalent norms on 3,:

171, =3 [179F,

=0

191, = [ 72+ [ 19, and

nmh=/ﬁ+/@ﬁ-

To establish the existence and uhiqueness of the solution to problem (3.6),
we use an optimization theorem of Thompson and Tapia [73].

Theorem 3.3. Let H be a Hilbert space, let C be a closed convex subset of
H, and let the functional J : H — R be continuous in C and twice Gdteauz
differentiable in C with second Gdteauz derivative uniformly positive definite
in C. Then the problem |

minifmize J(f) subjectto fe€C

has a unique solution in C.
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Using Lemma 3.2, we easily verify that problem (3.6) satisfies the condi-
tions of Theorem 3.3. This implies:

Corollary 3.4. Problem (3.6) has a unique solution.

Refer to the discussion immediately following Theorem 3.1 and note that -
the functions g, = G, constructed in the proof of that theorem are discon-
tinuous. Hence, they do not lie in J, if p > 1. Of course, no sequence g, in
¥, has the property that the penalized objective functional J(gm) — —00 as
m — 00.

On the other hand, if the penalization operator D for problem (3.6) is
of order p, the problem has a unique solution with at least p — 1 continuous
derivatives. Thus, one may choose the penalization order based on which
function (derivative of F,) one wishes to estimate.

. As in the parametric case, we have a theorem characterizing the limit of
the estimator sequence.

Theorem 3.5. With n fized, if the estimator sequence associated with prob-
lem (3.8) converges, its limit is a mazimum penalized likelihood estimator.

The corresponding penalty functional has first Gateaux derivative
‘ Df Dr
V(e = [ 2L,

This functional itself does not seem to have a closed-form representation,
although it closely resembles the Good and Gaskins [21] penalty.

3.1.1 Representation of the Density Estimator

In order to understand the properties of the penalized AR estimator, we
characterize it as the solution of a certain differential equation. The solution
can be represented as a generalized kernel density estimator by invoking
the superposition principle for differential equations. Some details about
properties of the eigenvalues and eigenfunctions of the differential equation
are also useful.
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Let X, ..., X, be ii.d. random variables with c.d.f. F, and p.d.f. f,. Let
D be a linear differential operator of order p > 1, with no constant term,
defined on a domain with appropriate boundary conditions. For fixed h we
obtain the AR density estimator as the solution f of the problem

'm1n1fmlze J(f) = / de + = / f2 / (DF) (3.10)'

subject to f > 0and [ f = 1.

The standard inner product on L, is (z,y) = [ zy, and the corresponding
square norm is ||z||2 = (x,z). With the weight function w(t) = 1/h(t), we
can identify the Hilbert space Ly, which has inner product (z,y),, = f ZYw.
Note that (z,y), = (z,wy). Let §,(¢) denote the unit point measure at s.
The empirical point measure is then f, = F, = n~1 )", dx,, so that Fy,(t) =
fot fa(2)dz = fo "(2)dz = fot dF,(z). We can now write the objective
functional of (3.10) as

J(f) = = (£, fadw + 31 + SIDS IS

To describe the solution of problem (3.10), we introduce adjoint operators
in Hilbert space. The L, adjoint D* of D is characterized by (Dz,y) =
(z, D*y), with z in the domain of D and y in the domain of D*. With
respect to Ly 4, the adjoint Dt of D satisfies (Dz,y),, = (z,D*y),. The
adjoints D* and D+ are related by

(Dz,y),, = (Dz,wy) = (z, D*wy) = (z, 1 D*wy), = (z,D*y), .

Thus, we have Dt = 1 D*w. Define the operator T, by

T, = D*D = L DD,
w

where T, is taken to be self-adjoint, so that formally
(Dz, Dy),, = (2, Tul)y = (Tu,9)y,. - - (3.11)
In what follows, we assume that (3.11) always holds.
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At this point, it is beneficial to digress and look at a few specific dif-
ferential operators and their adjoints. In fact, these are the operators D
used in most of the numerical calculations in chapter 4. We set w = 1 and
T =Ty = D*D for these two examples.

First, consider Dz = 2’ on the domain [0, 1] with the boundary conditions
z(0) = z(1) = 0. Then we have '

1 1 1
(D(B, y) = / z,y = zyl - / myl = (.’B, Dt:‘/) ’
0 0 0

so that D*z = —2z'. Note, however, that functions 2z in the domain of D* are
not necessarily subject to z(0) = 2(1) = 0. Now observe that with = and y
in the domain of D*D, we have

1 1 1
(Dz, Dy) = /o z"y'=wy'lo— fo zy" = (z,Ty)
1 1
= {U’yl _/ m”y = (‘:Tw, y>7
0 Jo
and (3.11) is satisfied.

Next, let Dz = 2" on [0, 1] with the boundary conditions 2(0) = z(1) = 0
and 2'(0) = 2/(1) = 0. In this case, we have

1 1 1 1 M
(Dz,y) = / z”y=z"y| - / z’y'=—wy'| + / zy" = (z, D*y),
0 0 0 0 0 _

so D*z = 2". Again, the domain of D* is not subject to the boundary
conditions imposed upon the domain of D. With z and y in the domain of
D*D, we obtain ‘

1 1 1 1 1
1 1 1 1
Y RV
0 0 0 Jo .

and (3.11) holds here also.
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To continue with the discussion, note that the penalty functional can now

be written as
1Dzl = (z, Tue),, -

Let J denote the identity transformation, and define the operators
Qo =T+ 0Ty and Ryw = 9,
Then we have

I£1I% + eI DA, = (f, Qawf), (3.12)

where Q,,, is a self-adjoint operator. The AR objective functional and its
first and second Géateaux derivatives now become

';(f) = _<f’fn)w+%<faga,wf>w1
J(f)r) = —(r fa)y + (1 Qauf),, and
J'(f)(rys) = (r,%uws), -
To accomplish the minimization of J(f), we let J'(f)(r) = 0 for all .

Thus, we obtain the weak differential equation representation of the AR
estimator as the solution of

Qowf = fn. (3.13)
In terms of the inverse operator, the solution can be written as
f = :Ra,wfn» (3.14)

To develop the generalized kernel representation of the AR estimator, we
introduce the kernel Z,,, ,, which satisfies the equation

Qa,wZa,w,a = 64- (315)

Since f, = %Z;;l dx,, we can use (3.15) to write f, as

fom 2300 Zamn, = 0 [lf:z ]
n — n awHaw,X; — *aw n aw,X; | -

=1 =1
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Then, by (3.13), we have

Qa,wf = Qa,w [% Z Za,w,X;:I .

i=1
This yields the generalized kernel representation of the AR estimator—
namely,
. 1<
FO) =23 Zawx () = / Zuos(t) dFi(s). (3.16)

n i=1 .

3.1.2 Special Cases

Now we take a brief look at two particular examples. These are interesting
in one respect because we can perform the calculations and exhibit closed-
form solutions. However, and more importantly, we see in these cases that
the ARE is in fact a kernel density estimator with a familiar kernel. So,
the properties (including asymptotic theory) of this ARE are already well
investigated.

3.1.2.1 Boundary-Corrected Kernel Density Estimator. In this
example, we use the first-order differential penalty operator Dz = z' on
[0,1] with boundary conditions z'(0) = z'(1) = 0. The reference distribu-
tion is uniform, so H(t) = ¢ and H'(t) = h(t) = w(t) = 1. For notational
convenience we use 8 = a~/2 as the smoothing parameter, and we write
Zp,s in place of Zg,,, The adjoint operator is D*z = —z' with bound-
ary conditions £(0) = z(1) = 0, and the quadratic form operator is given
by Qsf = f — B2f". Then the kernel Zs, satisfies the weak differential
equation ' ‘

Zﬂ,a(t) - ﬂ‘zzfa',,(t) = 6},(t) (3.17)

subject to the boundary conditions Zj,(0) = Z3,(1) = 0. The solution is
seen to be

Zg 4(t) = B csch Bcosh[B(s A t)) cosh[[J’(ll—- sVi)
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for (s,t) € [0,1] x [0,1]. We verify that this is the solution. Let Zs,(t) =
U'(t), where
0, t<
Um—ﬁ%wn={ J
subject to U(0) = U"(0) = U"(1) = 0. With

U() = J b AeoshlBl =) sinh(Bt),  t<s
T )1- csch B cosh(Bs) sinh[B(1 — t)], t> s,

, t>s

B csch B cosh[B(1 — _s)]v cosh(fBt), t<s

Zﬂ,a(t) = U’(t) = {
B csch B cosh(Bs) cosh[B(1 —t)], t>s, and

B?% csch Bcosh[B(1 — s)]sinh(Bt), t<s

— % csch B cosh(Bs) sinh[B(1 — )], t > s,

we see that the equation and boundary conditions are satisfied. We can use
the standard identities

bw=ww={

sinh(z + y) = sinh z cosh y + cosh z sinh y,
cosh(z + y) = coshz coshy + sinh zsinh y, ‘and
1= cosh®z — sinh®z

to see that U is continuous at s. Thus, in this case, the ARE is a boundary-
corrected kernel density estimator with a bilateral exponential kernel.

3.1.2.2 Kernel Density Estimator. The example of the previous sec-
tion can be extended to the real line as follows. We use the same differential
penalty operator Dz = z' on the interval [~ M, M]. The boundary conditions
for D are z/(—M) = z'(M) = 0, and the solution of (3.17) is then

Zg 4(t) = B csch(28M) cosh[B(s At + M)] cosh[B(M — sV t)]

on [—M, M]. Equivalently, we can write

Z5,(t) = B csch(28M) cosh[B(t + M)] cosh[B(M — s)], —-M <t<s
P ™\ Bosch(2) coshlB(s + M)] cosh[B(M ~ 8], s <t < M.
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Since sinhz ~ coshz ~ -%e’ as £ — 00, we have for £ < s

B LeP+M)  1op0-s) g

N _ P (-2
Zﬁ;‘(t) %ezﬁM P) €

and for t > s

| B LeBletM) Lot g
- Zp4(t) ~ —2 %e2ﬂM2 = 57070,

Putting this together gives
= B s
Zﬁ,i(t) ~ Kﬂ,a(t) = Ee 3
and as M — co the AR density estimator f(t) = fﬁ{ Zg 4(t) dF,,(s) satisfies
R - o0
foy~F)= [ Kault)dFi(o)

Of course, f(t) is the convolution kernel density estimator with a bilateral
exponential kernel. In fact, since

o o]
/ |Zp,4(t) — Kp,s(t)| dt = 2¢7PM cosh Ss,
—00
we can establish that

() = F)llz, < 2677M Z.cosh BX;. |

=1
Therefore, this AR estimator on [—M, M] converges in L; to a kernel density
estimator as M — oo.
3.1.3 Consisténcy and Rates of Convergence

Consistency results and convergence rates are expressed in terms of distance
measures on the space of functions containing the true parameter, f,, and the
estimates. To obtain results, one must typically use a sequence of smoothing
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parameters ¢, satisfying a,, = 0 as n = oo, where 7 is the sample size. We
make these dependencies explicit by writing the solution of (3.7) as

F = fronuw- (3.18)
Then one considers the convergence (in some sense) of fn,a,,,w to f,asn — oo.

On the other hand, for fixed n and sufficiently smooth p.d.f. f,0, we
have the recursive AR estimator sequence ( f,,io, f,,,l, fn,l, ...) characterized
by (3.8)—namely,

fn,i+1 = fn,a,.,wp where w; = 1/fn,i- (319)

In the following subsections we consider the properties of a single-stage
AR estimator (3.18), which means that w is taken to be fixed. We are
not concerned at the present time with the properties of the recursive ARE
sequence (3.19). '

We can approach these problems on a case-by-case basis, considering
individual (differential operator and boundary condition) configurations as in
section 3.1.2. Alternatively, we can adopt a more general approach. At least
two essentially different general approaches to similar problems appear in
the literature. One is Bosq and Lecoutre’s [6] probability-theoretic analysis
of generalized kernel density estimators. Another is the spectral analysis
method used by Silverman, Cox, O’Sullivan, and Wahba. (See the references
on page 53.) We now apply each of these techniques in an attempt to obtain
general results about the consistency and rates of convergence of the single-
step AR density estimator.

3.1.3.1 Generalized Kernel Analysis. For an AR estimator f, 4, . of .
fo with domain I, we define the pointwise distance measure

Dn(t) = fn,an,w(t) - fo(t) , t é I.

For G C I, we use the restricted global distance measure

de(g,f) = sup lg(t) — £(2)I-
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Now consider the AR density estimator constructed with a fixed (initial
guess) weight function w. From section 3.1.1, we have the generalized kernel

density estimator representation

fn,an,w(t) = %Z Za,.,w,X;(t) = /Zan,w,a(t) an(s),

=1 1

where the kernel Z, ., , satisfies the equation
Qa,wza,w,a = 6&-

The generalized kernel density estimator has been analyzed by Bosq and
Lecoutre [6]. We apply their theorem in the case of a fixed weight w and
state the result here.

Let I = [0,1]. We consider the measure space (I, B, ), where A is the
Lebesgue measure on I and B is the Borel o-algebra. The space JF is the
functional domain of the AR estimation problem. For G C I, define the
space Fg by )

Feo = {f:fes;migg {(:Ra,,,,—a)f](t)l =o}.

The intent is that F¢g consists of functions f that are sufficiently well-behaved
on G so that R, f — f in the manner indicated as a — 0.

The five conditions that follow are part of the necessary and sufficient
criteria for Bosq and Lecoutre’s results on arbitrary kernels. Our kernels
arise as solutions of certain linear differential equations, which should imply
that the first four conditions hold. The conditions can be verified on a case-
by-case basis for individual combinations of differential operator, boundary
conditions, and domain. Loosely speaking, conditions (1) and (2) are bounds
on the supremum and L; norm of Z, respectively, and conditions (3) and (4)
relate to the continuity of Z,,,(t) in £ and ¢, respectively. Condition (5)
involves the metric structure of I and G, and holds when G is an interval.
The conditions follow. \

Suppose that there is a positive constant 3, and:
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(1) There is a bounded function A : G — R, and for each t € G there is
an o, such that if a < a, then

SUp | Zo,w,z2(t)| < a"ﬂA(t).
z€l

(2) There is a bounded function B : G — R, and for each t € G there is
an a, such that if @ < o, then

f 72, (t) dz < o PB(t).
I

(3) There are a function 9o € Fg, apoint £, € G, and a family {Bs:a >0}
of Borel subsets of I such that

9o(to) > 0,
M Be) = ko? for k>0, and

/ Za,w,z(to)go(m) de >4 for § > 0.

Ba

(4) (I,B) is a metric space with Borel o-algebra B, and Z,,, , satisfies the
Lipschitz condition

sup lZa,w,z(t') — Zowa(t)] < Ca™™|t - |
zel
for some C > 0, m > 0, and v > 0.

(5) (I, B) is a metric space with Borel o-algebra B, and G € B is precom-
pact (i.e., has compact closure). 0 < A(G) < oo, and there isan h > 0
such that for all & small enough, G can be covered by [e7"] balls of
radius < €.

Next is a condition on the convergence of the smoothing parameter se-
quence. The sequence a, is called asymptotically concave if there are a con-
cave function g, positive constants ¢; and ¢y, and an integer n, such that

c19(n) € a, € cag(n), VYn > n,.
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The mode of convergence used in Theorem 3.6 is almost complete conver-
gence, denoted X, 23 X and defined by

o0
X, 23 X <= Ve >0, Y Prd(Xs,X) > €] < 0.

n=1

Almost complete convergence implies almost sure convergence, denoted
X, =3 X and defined by

X, =5 X <= Pr[d(X,,X) = 0] =1.

In turn, almost sure convergence implies convergence in probability, denoted
X, -2 X and defined by

X, 2+ X <= Ve > 0, Prld(X,,, X) > €] = 0.

Finally, we state the results of Bosq and Lecoutre. The theorem guarantees
strong uniform consistency of the generalized kernel density estimator. The
corollary establishes the rate of convergence.

Theorem 3.6. If the preceding conditions (1) through (5) hold and o is
asymptotically concave, then the following conditions are equivalent.

(1) n~ta;Plogn — 0.
(2) D,(t) %% 0, ED,(t) » 0; t € G, f, € Fo.
(3) dG(fn,a,.,w,fo) a_?i) 0: EdG(fn,a,.,w,fo) - O; fo € gG-

Corollary 3.7. Under the preceding conditions, there is a § > 0 such that
for all n large enough and for alle > 0

Pr[dG(fn,an,wa fo) 2 5] < Zexp(—652nag).
As a consequence of the corollary, if we choose
En = A . (log n)1/2n"1/2a;‘ﬂ/2’
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we then obtain
Pr [(log n) 202082 de(franw fo) = /\] < 2exp(—6X2logn) = 20~V
for any A > 0. Then the corresponding rate of convergence in probability is
(log n)"l/znl/zai,’” dG(fn,a,,,w, fo) 2,0 as n— 0.

We can show that 8 = (2p)~1, where p is the order of the differential penal-
ization operator. The convergence conditions are then

n 1%
a,,——)Oanda,.Eg—T—l— — 00 as n — 00.

Thus, the rate for convergence in probability becomes
(log n) 20 20/* dg(fnanws fo) =+ 0 as n— oo,
and choosing o, = n~2" for some 7 with 0 < 4 < 1 results in

(log n) 20 M=N/2 do(fo a0y fo) == 0 as n — oo.

3.1.3.2 Spectral Analysis. Here, f, is the true parameter value. We
~ analyze the estimator f = Ra,wfn by characterizing the error as

f - fo = (f - :Ra,w.fo) + (:Ra,wfo - fo);

interpreting R, »f, as the asymptotic “infinite sample size” solution of the
estimation problem. In any norm ||-||, we can bound the error of the estimator
by means of '

UF = Foll? < If = Rawloll® + |Ragu fo = foll? = T1 + T,
in which

Tl = “.f - :Ra,wfonz - E “f - :R'a,wfonz and
T; = E||f = Rawloll® + |Rawfo — foll*.
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Since ET; = 0, it follows that E || f — f,||> < 2T;. The “mean” error T is the
sum of a “variance” term E || f — Ro o fo||? and a “bias” term || R fo — foll*.
It is shown in Theorem 3.8 that E f = Rawfo- We now characterize the
behavior of T to obtain rates of convergence for E ||f — f,||*.

To that end, let A; and ¥; be the eigenvalues and L, ,-orthonormal eigen-

functions of Q, ,,, so that
Quwti = A7, (Wi, Quts), = A0, and (¥, ;) = dij.

Recall that T, = %‘D*wD, where D is a linear differential operator of order
p with no constant term. Note that we are using the operator Q; ,, = J+ Ty,
and that :
Qow=01-a)T+aQu=T4a(Qw-T).

We use Q, ,, in the analysis to isolate the smoothing parameter a. By equa-
tion (3.12), we have

(£, Qf)y = Il + IDFIE,

for all f. Therefore, Q,,, is a positive operator and all eigenvalues are pos-
itive. With 9); = constant, we see that Q;,%; = 9;, and so the constant
function 4, is an eigenfunction with eigenvalue A; = 1. Furthermore, since
we have on one hand

(i, Quthi)y, = [9slll, + 1 DGll}, = 1+ [ Dl
and on the othér haﬁd | |
(Wi Quathidy = (¥ A1), = A7 (¥ i)y, = A7 [IlI5, = A7,

it follows that ;
T 1+ || Dyll2

Therefore, the eigenvalues are all positive, and they satisfy

Ai

I=h2X2X2--
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Also, since T, is a linear differential operator of order 2p, one can show that
there are constants a and b with

0<ag Ni?P <b< oo,

so that the eigenvalues ); decay like i~?. For reference, see Riesz and
Nagy [58], p. 238, and Silverman [66], Lemma 5.1.

The 1); are also Ly ,,-orthonormal eigenfunctions for Qg and Raw. These
operators act on the eigenfunctions as follows.

Qa,w"/ji = ')'i_l"/)i and :Ra,w'l/)i = Y1,

where
=1-a)taXi=1+a(t-1).

General eigenfunction expansions are then

= Z <z, "pi)w ¢i’ Ql’wz = Z At_l (m1 ¢i)w ¢i’
t—l =1
aww = Z'Y; (:C Il)bl) Yi, and Ra,wx = Z'Yi (:D, 1/)1')1” ;.
i=1 =1

For the analysis of AR estimators, relevant eigenfunction expansions are

= Zci'/’" Rewlo = ZViC;'/’i, f= Z’Yiﬂi¢h

i=1 .=l i=1

f=Rewfo=) %Bi—cls, and Rawfo—fo= (% — e,
=1

=1
where

= (fos ¥i)u / fothiw = / YwdF, and
.= Uiy = [ foew = [ gewdF,.

Now, note that E3; = ¢;. This implies E f = Rowfo, Which in turn estab-
lishes:
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Theorem 3.8. For any weight w, the AR density estimator f = Rawfn 18
an unbiased estimator of Ra . fo, where f, is the true parameter value.

The condition ||Q; »f||% < oo is equivalent to Wahba’s [78] “very smooth.”
We refer to the stronger condition ||Q;wf|[2, < oo as “way smooth.” Con-
vergence of the bias Ry f, — fo is provided by:

Lemma 3.9. Suppose that ||Qy 4 fo||Z < 00. Then

1Rawfo = Folll, =0 (c?) and
”:Ra,wfo - fo”iw =0 (a) .

If in addition ||Q ., f.||2,, < 00, then
’ l,w

”Ra,wfo - fo”iw == 0 (az) .

We can also provide rates of convergence for the error variance term
f — Rawfo- Note that the rates of convergence given in Lemma 3.10 apply
when the weight function has the “correct” value of w = 1/f,.

Lemma 3.10. Suppose that w = 1/f, and ||Q1,wfol|% < 00. Then

E|f = Rawlolly, = O (n7'a™/%) and
Ellf = Rawfollip = O (n7'a7171/%).

Combining Lemma 3.9 and Lemma 3.10 establishes
Theorem 3.11. Suppose that w = 1/f, and || Q1w f,||% < 0o. Then

BIf— £ =0 (-0~ +0?) and
E ”f - fo”iw =0 (n'la'1’1/21’ + a) .

If in addition || Q1w foll?, < oo, then
Ellf - fl}, =0 (n a7V + 7).
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This result implies the following statements about rates of convergence
under various conditions. In the norm || - ||,,, convergence is obtained for any
sequence q, with

a, -0 and n%®o, 500 as n— oo.
In particular, with

Qi ~ 02/ = 17241/ Ep42)

the best rate of convergence provided by Theorem 3.11 is
E|lf - £l -0 (n~%/P+D) = 0 (n—1+1/(4p-;-1)) .
In the norm || - ||y, convergence is obtained for any sequence o, with
an, =0 and n®/Crtlg, 500 as n— oo,

and when
Oy ~ n~2p/(4p+1) — —1/2+1/(8p+2)

the best rate of convergence provided by Theorem 3.11 is
Ellf - full2,, = O (n"/#+0) = O (n-1/2+1/4)
Suppose additionally that f, is way smooth and-
ap ~ n~20/(6p+1) — —1/3+1/(18p+3)
Then the best rate of convergence provided by Theorem 3.11 is
Ellf - fol2, = O (/@) = 0 (n=2/3+2/180+9))

It remains to characterize the random error component Hf —Ra,wfs||? in order
to obtain convergence rates for ||f — £,||* - 0.
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3.2 Inverse Problems

In this section, we discuss a generalization of density estimation that in-
volves indirectly observed data. We present two examples, the deconvolution
problem and Wicksell’s corpuscle problem.

Let Xi,...,X, be iid. with unknown p.df. f,, which we wish to es-
timate. Suppose that the X;’s are not directly observable, but that we do
observe the “transformed” i.i.d. data Zi,... , 2, where the common p.d.f. of
the Z;’s is

9o(t) = [X£o](2)
for some known operator K. Based on the data Zi,... , Z,, the AR functional
for estimation of g, is

J(g) = = (gn, 9 + 3ll0l%-

The “correct” weight is w = 1/g, and g, = G}, where the empirical c.d.f. Gy,
is based on the observable data Z;,... ,Z,. .
Since g = X f, we estimate f using the AR objective functional

J(f) = = (gns XS}y + 3Kl

For nonparametric estimation, we penalize f and use

J(f) = = (gns XS + 3IKFIG + $1DF IS,

where the “correct” weight is w = 1/Xf. The penalty operator has the
usual characteristics: D is a linear differential operator of order p > 1, with
no constant term, defined on a suitable domain with appropriate boundary

conditions.
Let (X'f)(r) denote the Gateaux derivative of X at f in the direction r.
Then the Gateaux derivative of J at f in the direction r is

J'(£)(r) = = (gas (K F)(r))y + (XS, (X' f)(T)),, + (DS, Dr),
= — (Wgn, (K'f)(7)) + (WXKSf, (X'f)(r)) + a {wDf, Dr)
= - ((fK'f)"wgm 7') + ((ﬂC’f)*ijf, ?') +a (D*wgf‘) 7‘) ’

~
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and the differential equation for the estimator f of f, is
(X' f)*wX + aD*wD] £) (£) = [(X'f) wga] () (3.20)
or, more brieﬂy,
[(K'F)*wX + aD*wD] £ = (K')*wga.

This applies when X is an arbitrary (linear or nonlinear) operator.
If X is a linear operator, then X'f = X. In this case, the differential

equation simplifies to
[K*wX + aD*wD]f = K*wg,. (3.21)

It is possible to conduct a spectral analysis of the linear inverse problem us-
ing the technique of “simultaneous diagonalization” for infinite-dimensional
operators and, thereby, obtain general results. See Cox [9] and Cox and
O’Sullivan [10] for work of this nature. We do not pursue this analysis here.

3.2.1 Deconvolution

Consider the model
X=Z+W

where the random variables have densities
X~gyy Z~f, and W~k

We assume that Z and W are independent and that k is a known continuous
density. The parameter of interest is the density f, of Z. However, we
observe X and not Z. The cumulative distribution of X is

- Gelt) =Pr(X <) =Pr(Z <t -W) =/°° -

—00 vV 0O

fo(2)k(w) dz dw,
so X has density
9(t) = /_ i folt - w)k(w) dw = /_ " k(t — z)f,(z) dz.
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This is called the convolution of k and f,, and denoted
o0

[k * fo](t) = / k(t — z)fo(z) dz.
—00

So, in the context of section 3.2, we have [Kf,](t) = [k * f,](t). Since X is a
linear operator, the equation for the AR estimator f of f, is given by (3.21).

This problem can be analyzed directly for a specific contaminating distri-
bution k, at an intermediate level of generalization with X being the convo-
lution operator for an arbitrary k, or through the general methods referenced
at the end of section 3.2. We pursue no further analysis here, but in chapter 4
we do present some example calculations and a simulation study that com-
pares the nonpafametric AR deconvolution estimator to other deconvolution

estimators.

3.2.2 The Corpuscle Problem

Imagine a solid medium in which spheres occur according to a homogeneous
Poisson process with unknown rate A. The sphere radius is the random
variable of interest, with p.d.f. f,, which has support [0, Rys] where Rps > 0.
The radii are not observed directly. A planar slice is taken through the
medium, and we observe the resulting radii of circles that are the intersection
of the plane and certain spheres. Of course, the slice misses some spheres
completely and cuts the others at unknown latitudes. The p.d.f. g, of the
observable circle radii is calculated in the following manner.

Let the sphere radius R have p.d.f. f,Ijo,r,). Independently of R, let
the random variable Y have the uniform distribution on (—Rys, Ra). So the

pdf. of Y is .

TRy (-RaRu)s
and Y represents the sphere coordinate at which the slice is taken. Let the
random variable § be given by
1, [Y|<R
0, [Y|>R,
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so that § = 1 if and only if the sphere is sliced, in which event D?+Y? = R?,
where D is the circle radius. The c.d.f. of circle radius is denoted by G,, and

50
Pr(D>t and §d=1)

Pr(6 =1)

—Go(t)=Pr(D>tld=1)=

The denomina.tor is

Ras ‘ RM
Pr(d = 1) / [ —fo('r) dydr = ﬁ/o. rfo(r)dr = -I_?,l:; ER.

Since D > t and § = 1 together imply that both ¢t < R < Ry and Y2 <
R? — 2, we calculate the numerator as

/RM / T ——dy fo(r)dr = i V12 —2f,(r) dr.

Yy

Then the circle radius c.d.f. is

Go(t) =1- E_R V — 82 f,(r) dr,

and the p.d.f. is

1 [Bx ¢ p
go(t) - ER[ mfo(r) T
So we can write ‘

9o = Xfo,

where the operator is given by

tftRM (r? —t3)~12f(r) dr
foRM rf(r)dr

Since X is a nonlinear operator, the differential equation for the AR estimate

[X51(2) = (3-22)

f of f, is given by (3.20). There is a demonstration of the nonparametric
AR corpuscle problem estimator in chapter 4, where we also show that the
problem is essentially linear.
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3.3 Poisson Process Intensity Estimation

In this section, we discuss the application of AR estimation to the Poisson
process. Due to the close relationship between density estimation and Poisson
process intensity estimation, previous results apply here with only slight
modification.

With h fixed, the AR functional for estimation of the intensity g, = G,
of a Poisson counting process N on [0, 1] is

1 12
g 1 g
J; __/ _dN+_/ =,
»(9) o h 2Jo h

The natural constrained optimization problem is then

minigmize Jrn(g) subject to g€ LyNE, (3.23)

where the constraint set is € = {g : g > 0}. We can construct a sequence
{9m}%-; in L, N € with the property that J(g,) = —oo as m — oo, thereby
showing that J is unbounded. As a result, the optimization problem has
‘0o solution in L. In fact, Gm(t) = [ gm(x)du converges in L, to N, the
sample path of the counting process. Details are in the proof of:

Theorem 3.12. Problem (3.23) has no solution.

As in the case of density estimation, we can penalize the objective to
obtain a related problem that does have a useful solution. Specifically, the .
penalized problem is

minimize J;(g) subject to g € H,NEC, (3.24)
9

1 2 o [ (Dg)?
Jh(g)=~=‘/%dN+—2-/‘%+—2—/( ’f)

for some o > 0. As in the case of density estimation, D is a linear differential
operator of order p > 1. Of course, D has no constant term and is defined

where

on a suitable domain. We formally state:
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Theorem 3.13. Problem (3.24) has a unique solution.

If the differential operator D has order p, then the problem has a unique
solution with p — 1 continuous derivatives. Thus, one may choose the penal- -
ization based on which function (derivative of G,) one wishes to estimate.

As in the parametric case, we have a theorem characterizing the limit of
the estimator sequence.

Theorem 3.14. With n fized, if the AR estimator sequence associated with
problem (3.24) converges, its limit is a mazimum penalized likelihood estima-

tor.

3.3.1 Representation of the Intensity Estimator

In this section, we give a characterization of the AR intensity estimator.
The situation is analogous to the density estimation case presented in sec-
tion 3.1.1, so the discussion is brief. ‘

The intensity estimator § is the solution of

J'(g)(r) =0 for r € H,,

and so the estimator satisfies the differential equation

(3 +ah- D*%D) g=dN.

Here, dN = 3, 6, where §; is the point mass at £. We can write

n t n
30 =Y su(®) and G = [ gu)du=35,00),
i=1 ’ 0 i=1
d ' .
where EZSt(u) = s4(u), and observe that s, satisfies
1
L (j + ah - D*ED) 8t = 6t.
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3.3.2 Special Case

We can compute the solution of the AR intensity estimation problem in
this special case, which is the Poisson process analogue of the problem of

section 3.1.2.1. ‘
With Dz = 2’ and h = 1, we can derive a closed-form solution for the

unconstrained version of problem (3.24). We impose the boundary conditions
s(0) = s}(1) = 0 to specify a solution. We see that the solution does in fact
satisfy the constraints. Since H(t) =t, h(t) = 1, and h'(t) = 0, we have

s; — asy = 0;.

Integration yields
0, u<t

Se(u) — Sy (u) =
1, u>t
with boundary conditions S;(0) = S;'(0) = S;(1) = 0, for S; € },. Asin
section 3.1.2.1, the solution is

S(u) = csch B cosh[B(1 — t)] sinh(Bu), u<t
t 1 — csch B cosh(Bt) sinh[B(1 — )], u >t

where 8 = a~1/2, Also, note that S;(1) = 1 for all ¢ € [0,1]. The nonpara-
metric compensator estimate is then

Gu) = Si(u).

=1
This establishes existence and uniqueness of the solution, and the form
of the unconstrained solution. Since

B csch B cosh[B(1 — t)] cosh(Bu), u<t
B csch B cosh(t) cosh[B(1 — u)], u2>t,
we see that s;(u) > 0 for all ¢ and u € [0,1]; therefore, the unconstrained
intensity estimator § = G’ satisfies g > 0. So we have solved the constrained

optimization problem. We recognize the solution § as a (boundary-corrected)
bilateral exponential kernel intensity estimator.

si(u) = Si(u) =
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3.4 Proofs

Proof of Theorem 3.1. Let t;,... ,t, be ordered distinct data in (0, 1).
Suppose that h(t;) > 0 for all i. ThlS is reasonable because the “correct”
value of h is fo, which is necessarily positive at each t;. Furthermore, we
suppose that h is continuous since we are primarily interested in smooth
(continuous or even differentiable) estimates of the density.
For m large enough so that ¢;, t; — t;_;, and 1 — ¢,, are all greater than
1/m, let
onlt) = 2o (Fke{l,...,n}) jt—t| < 5=
| 0, (Vke{l,...,n}) Jt—t> =
Clearly, g, € L, N € for all m large enough. Note that

Inn(9m) = n2 Z h(t; ) 2n2 z / h

Since
tit e

/ Mol mo o
e TR T

ti—3

it follows that
1 1 1 ’
-n—an,h(gm) — —577’5 :21 _h(f,') as m —r o0.
We have established that Jn ;,(gm) — —00 as m — oco. Thus, J is unbounded

below on L, N €, and the optimization problem (3.1) has no solution. O

Proof of Lemma 3.2. The equivalence of ||+ ||, and || ||y, is a special case
of Corollary 4.16 of Adams [1]. For the equivalence of || - [l and || - ||,p, see
Silverman [66). O

Proof of Theorem 3.3. See Thompson and Tapia [73]. O
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Proof of Corollary 3.4. We verify the hypotheses of Theorem 3.3 in the
context of problem (3.6), where the Hilbert space is H = JH,, the constraint
set is )

C={feH,:f>0 and [f=1},

and the functional is

J(f)=;/—£an+%/I;+g/(9_{)2.

The constraint set € is clearly convex. To see that C is closed, consider
a sequence g, in € and a point g € H with ||g, — g|| — 0. Since g and each
of the g, are absolutely continuous, we have g, — g pointwise, and therefore
g > 0. Writing g = g, — (gn — g), we have [g = 1 — [(g, — g). Since
| [(9n — )1 < [l9n — 91 < 4/ [ 19n — gI* < llgn — gl|, by Jensen’s inequality,
we have [ g = 1. Therefore, C is closed.

Again, since ||f — g|| — 0 implies f — g pointwise, each map f —
f(t)/h(t) is continuous. The definition of the norm, along with the norm
equivalences of Lemma 3.2, implies that f — [ f2/h and f — [(Df)%/h are
continuous. Therefore, J is continuous.

The first Gateaux derivative of J(f) in the direction r is

J'(F)(r) /hdF +/f’" /9”3"

The second Gateaux derivative of J(f) in the directions r and s is

J"(f)(T,S)= _7_";3+a/9)1‘h95.

~ The cone tangent to € at f is defined as

T(f)={ne€XH:3t>0, suchthat f+tneC},

and, by definition, J” is uniformly positive definite in € if there is a k > 0
such that for each f € €

J"(f)(n,n) > kllnl*, Vn € T(f).
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In fact, by the norm equivalences of Lemma 3.2, we see that J” is uniformly |
positive definite on all of K. O

Proof of Theorem 3.5. The negative penalized loglikelihood for density
estimation is

L(_f)=—/logde,,+av(f)

for a suitable penalty functional v. Its Gateaux derivative is
(0 == [ FaF+ /(1))

We express the constraint [ f = 1 as the functional relationship Tf = 0 and
note that the derivative of T is

(N = [

By the method of Lagrange multipliers for infinite-dimensional constrained
optimization problems, the penalized likelihood estimator f satisfies for all
r and some real A

L'(£)(r) + AT'(f)(r) = 0,
which is to say

—/Irden+A/.r+ai/’<f)(r)=0.

See Luenberger [46] for a discussion of the Lagrange multiplier method in
infinite-dimensional spaces. Now consider minimization of the AR objective

__[f 1/ﬁ af(Df)2
J(f) = /hdF,,+2 2 [EL
Differentiating, we have
, __[r fr Df Dr
J()(r) = /hdFé+/ A +a/ 2,
and the constrained solution f satisfies for all » and some real u
J'(f)(r) + uT'(f)(r) =0,
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which is

rfr fr _ DfDr
—/han+/h+u/r+a/ 5 = 0.

Upon convergence, we have f = h, so the relationship is

—/—}an+(1+p)/r+a/foDr=0. “

Identifying A = 1+ u and V'(f)(r) = / fo‘Dr completes the proof.

O
Proof of Theorem 3.6. See Bosq and Lecoutre [6]. O
Proof of Corollary 3.7. See Bosq and Lecoutre [6]. O

O

Proof of Lemma 3.9. See the proof of Theorem 3.11.
Proof of Lemma 3.10. See the proof of Theorem 3.11. a

Proof of Theorem 3.11. The relevant norms expressed in terms of eigen-
function expansions are

(oo} (e <] 0 .'
1565 = "c 1Qufolll =D A% [Rapfilll =D e,

i=1 i=1 i=1

”f - Ra,wfo”tzu = 27:2(133 - ci)zv and ”.fo - :Ra,wfo”azu = Z(l - 75)2c?'
i=1

=1

Then the error of the estimator can be bounded by -
$IF = Folll < N = Rowolll, + [Rawfo = £l
[s o} o0
=) HB-al+) (1-w)'d.
=1 =1

To compute the expected value, note that the expectation of the first sum

is a (weighted) sum of the Var B;. Let o = [ dipw?dF,. It is straightfor-
ward to compute Cov(8;, 3;) = n~1(0%; — cic;), so that Var §; = n~1 (% — cf).

We then have the expectation

. oo 1 oo
E|f - Rawlollt = Z’y'-zVarﬂ.' =n ny?(a?‘- - ),

=1 i=1

82



which gives a bound on the expected error.
1E|f- fl% <E llf ~ Rawfoll? + Resfo = A
Z'yf(a -+ E(l —7)?E =018 + S, (3.25)

:_1 =1

In the analysis of S;, we confine our attention to the case of h = fo, or
w = 1/f,. Then we have 03; = [ 9w = §;; and Var §; = n~}(1—¢}) < n7?,
so that

S; < 2= :
! Z’Y' ;(l—a+a)\i‘1)2

We approximate S; with an integral in the manner of Silverman [66] or
Wahba [78].

1 / 1. __h
1-a)2), (1+06z2)?2 " (1-a)?’

where § = /(1 — a). We use the change of variables

1 1— 2\ zl—1/2p(1 _ z)1/2p-—1
z——m, x—(ez) , and dz=-— 2p 017 77 dz

Sy ~

to obtain

B (2 -1 l)
p? 2p -
b= — - = 0(a™/®)

Therefore,
n S =0 (n'la'l/zp) .

We can obtain a bound for S; by making use of the smoothness condition
191 fl2 = 352, A 2e? < oco. Observe that

Sy = Z(l — %)% = Z ()‘a__;_lo)[:\ﬂ)z

=1 i=1
00 /\—2 2 A-—2c 2
<o VR
* ;(l—a+az\ “TE T Z(1+0/\”1)2



and that

AT2ci2 9 .

Hence, by the dominated convergence theorem (the dominator is also the

limit here),
Sz - 92“91,wf“,2” as 6 —0.

Therefore
Sz =0 (a2) .

We thus obtain the asymptotic rate of convergence for expected error

E|lf - folla = O (n" e/ + o).
In the native Sobolev norm given by
213w = llzll% + 1Dl = (2, Qwa), ,

we have

oo
lzlfw =D N (2, %e)s -

=1

As in equation (3.25), we can write

. . 1 o0 _ oo _ .
LEf - fllfw < = DN - )+ YA -0
. =1 =1
And when w = 1/f, we have

S < A'._I 2 — U .
1 Z i Vi ‘z=1: (1 _ a+a/\,-_1)2

i=1

Approximating S; with an integral results in

1 © % 1
Sy ~ _(1 — a)z A (1 + 03;2?)2 dz = (1 — a)le.

We evaluate
1
B(1-4,1+ 1)
‘ 2p g1+1/2p

I1=
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to obtain .
S =0 (a”1"1/2”) .

The second sum satisfies

—32

2
<6 Z (1 +0X'1)2

i=1

Using ||Q1,,f,||2, < o0, it can be shown by dominated convergence that
= O(a). See Silverman [66]. Consequently,

E|lf - ol =0 (n7'a™ "/ +0).

If we assume the additional smoothness condition ||Q; . f,||3,, < oo on
the true density, we can apply dominated convergence to obtain S; —
0?Q,wflI2, = O (e?) and in turn

E|lf = follu = O (7' " 1+ o).
O

Proof of Theorem 3.12. Apply the method in the proof of Theorem 3.1.
O

Proof of Theorem 3.13. Apply the method in the proof of Corollary 3.4.
a

Proof of Theorem 3.14. Similar to Theorem 3.5. The negative penalized
loglikelihood for a Poisson process on [0,1] is

1 1
L(g) = —/ logng+/ g+ av(g)
0 0

for a suitable penalty functional v. To evaluate the Gateaux derivative, note

that .

d 1
Y /0 log(g + Ar) dN
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1
= / y

Therefore, a penalized loglikelihood estimate g satisfies

d 1
a/ﬂ (g+/\r)

L'(g)(r) = / dN+/ r+aV(g)(r) = Vr.

Now consider minimization of the objective

g 11g* o [(Dg)?
/th+2/h+2f——-—h.

Differentiating, we have
J(g)(r) = / dN + 99 .

At a fixed point, we have h = g, so that

—/de+/r+a/DgD,’"=
g g

Thus, the methods produce the same solution if +/(g)(r) = / _
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4. Practical Nonparametric AR Estimation

In this chapter, we consider the practical computational aspects of non-
parametric asymptotic regression estimation. We have seen that there are
closed-form solutions in certain cases for the nonparametric AR estimation
problem. In general, however, this is not possible. So, in order to obtain
numerical results, we use a finite-dimensional (discretized) approximation to
the infinite-dimensional problem.

In section 4.1, we present the discretization scheme for density estima-
tion and inverse problems. Since density estimation techniques apply to
the -problem of intensity estimation for completely observed Poisson pro-
cesses, the Poisson process problem is not discussed explicitly. Section 4.2
describes a data-driven procedure for selection of the smoothing parameter.
In section 4.3, by means of a Monte-Carlo simulation study, we compare
nonparametric AR estimation to several competitive methods for solving the
deconvolution problem.

4.1 Discretization Techniques
4.1.1 Density Estimation

We begin by recalling the nonparametric (penalized) AR density estimation
problem from chapter 3. That is,

minifmize J(f) subject to feH,N{f:f>0,[f= 1},

where the objective functional is

J(f) = /de +1 /fz /(Df)z (4.1)

a > 0 is a constant called the smoothing parameter, h is a p.d.f., D is
a linear differential operator of order p > 1 with no constant term, and
F, is the empirical c.d.f. based on a sample X = {Xj,...,X,} of size n
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distributed with true density f,. In terms of the weighted L, inner product
(z,y),, = J wzy, we use w = 1/h to express (4.1) as

J(f) = = (f, fado + 5115 + SIDSI
L{f,(0+ ot D wD)f), — (far lu
L(f,(w + oD*wD)f) — (wfn, f)
L(£,9f) — (bn, ),

where Q = w + aD*wD and b, = wf,. The discrete version of this problem

is
minifmize 1f'Qf —bLf subjectto f>0 and K'f =1, (4.2)
which, of course, is the quadratic programming problem. High-quality soft-

ware for solving this problem is readily available.
Note that the solution of the unconstrained problem /

minifmize PQf-bif
is also the solution of the system of linear equations
Qf = b,. - (4.3)

In some applications, the constraints can be ignored and the estimator can
be computed as the solution of (4.3). An easier computational problem does
not exist. |

At an intermediate level of complexity, we have the equality-constrained
problem ‘

min%fmize 3/'Qf —b,f subject to k'f =1. (4.4)

- The solution to (4.4) integrates to 1, but may attain negative values. How-
ever, in a reasonable proportion of practical situations, the solution does
indeed satisfy the positivity constraint. If necessary, the solution can be
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truncated and renormalized to obtain a non-negative density estimate. This
observation, coupled with the complexity of (4.2) relative to (4.4), makes it
worthwhile to compute (4.4), check. for positivity, and solve the quadratic
program only when necessary. In fact, (4.4) can be realized by solving two
linear systems, as we now show. '

Let b = b,. The Lagrange multiplier condition for (4.4) is

Qf — (b+ k) =0

where A is a real constant. With ¢ and d such that Qc = b and Qd = k, we
have f = ¢+ Ad. Because k'f = k'(c + Ad) = 1, we have A = (1 — k'c)/(k'd)

d
an 1-Fke¢c

k'd
We now discuss the particular form of the (approximate) discrete rep-
resentation. Our discretization is based on m values. Let D denote the

f=c+ d.

m X m matrix representer of the differential operator D, and let W denote
the m x m diagonal weight matrix of the inner product. Here, f, is a dis-
crete representation of the empirical point measure (i.e., a histogram estimate
with m bins), and b, = Wf,. The quantities g and k are m-vectors, and

Q=W+aD*'WD.

For convenience, we take the domain of all functions to be [0,1]. Par-
tition this interval into m subintervals of length 1/m. Denote by I; the i*®
subinterval, so

11._—.[0, l] and I,-=('“1, i] ,i€{2,...,m}.
m m m

Functions are constant on subintervals, with values to be taken at the mid-
points of subintervals. The discrete domain values are then

i—1/2
m

(z1,... ,Zm) where z; = , 1€{1,...,m}.
The functions h, w = 1/h, and f are represented by m-vectors. Le.,
h = (hy,... ,hy), where h;=h(z;) for i€ {1,...,m},
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and likewise for w and f. The vector k is the representer of z — [ z, so
1
k= (ki,... km), where k;= p for i€ {1,...,m}.

The discrete version of f, is a histogram density estimator. Specifically, we
have

m
n

fo=(Fars--- s fam), where fp;=—|XNIL| for i€ {l,...,m}. (4.5)

The diagonal weight matrix W has entries W;; = w;. Derivative operators
are represented by difference matrices. Let D, denote the representer of
z — z®). The first difference is

and higher-order differences are given by

DiD,_,, peven
Dp-——IDl’ pOdda

p =

with the appropriate corrections for boundary conditions. These representa-
tions are used to compute solutions for any of the problems (4.2), (4.3), and
(4.4).

When we refer to a smoothing parameter value of c, we are actually using
oP, where p is the order of the penalty operatior. This makes the smoothing
parameter independent of the penalty order.

The recursive sequence of AR estimators ( fo, fl, fz, ...) is computed by
using an initial value of 7o, and then setting w = 1/f; to obtain fir1 as the
solution of (4.2), (4.3), or (4.4), as appropriate.
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The following example graphs (Figures 4.1-4.5) illustrate the various so-
lution options for AR estimation. We used S-PLUS to perform most of
the numerical calculations. An IMSL routine was used to solve quadratic
programs. One data set, the “Buffalo snowfall” data, was used in all the
examples. This data set of size n = 63 consists of annual snowfall amounts
in Buffalo, New York, for the winters of 1910/11 through 1972/73. This is a
classic example of a data set that may come from a trimodal distribution.

Figure 4.1 shows the effect of variation in m, the discretization grid size.
Values used were m = 10, 20, 50, 100, 250, and 500. These are single-step AR
estimates with the penalty operator Dz = 2", a smoothing parameter value
of @ = 0.001, and a uniform reference distribution. Solutions were computed
ﬁsing problem (4.4). The solutions are non-negative everywhere, so they are
also solutions of problem (4.2). The graphs in Figure 4.1 explicitly show that
the approximate solutions are piecewise constant. In the remaining figures,
estimate values at the midpoints of intervals are connected with straight lines
to give continuous graphs.

Figure 4.2 shows the effect of variation in «, the smoothing parameter.
Values used were oz = 0.0002, 0.0005, 0.001, 0.002, 0.005, and 0.001. These
are single-step AR estimates with the penalty operator Dz = 2", a grid size
of m = 100, and a uniform reference distribution. Solutions were computed
using problem (4.4).

Figure 4.3 shows the effect of various penalty operator orders. Here we
used Dz = 2 for p = 1, 2, 3, 4, 5, and 6. These are single-step AR
estimates with a uniform reference distribution, a grid size of m = 100, and
a smoothing parameter value of o = 0.001. Solutions were computed using
problem (4.2).

Figures 4.4 and 4.5 display recursive ARE sequences with five iterations.
In all cases, we used a uniform initial weight, a grid size of m = 100, and a
smoothing parameter value of a = 0.001. In Figure 4.4, the penalty operator
is Dz = 2", and Figure 4.5 depicts Dz = 2® with p =1, 2, 3, 4, 5, and 6.
Solutions were computed using problem (4.2).
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4.1.2 ' Inverse Problems

Recall the problem formulation from section 3.2. The random variables
Xi,...,X, are i.i.d. with unknown p.d.f. f,, which we wish to estimate.
Observed data are Z;,... , Z,, where the p.d.f. of the Z; is

go(t) = [:Kf o] (t)

~ for some known operator X. Here, we assume that X is a linear operator. The
empirical c.d.f. based on the observable data is G,, and the corresponding
empirical point measure is g,. An estimate f of f, is a solution of the problem

minifmize J(f) subject to feFH,N{f:f>0,[f=1}. (4.6)
The objective functional is

J(f) = = (gn XS)y + IKSIE + $IDSIL
= 3 (f, (X*wX + aD*wD)f) ~ (K*wgn, f)
= 5(£,91) = (ba, ).
Let K denote the m x m matrix representer of the operator X. The
discrete versions of problem (4.6) are given by (4.2), (4.3), and (4.4) with
Q = X*wX + oD*wD and b, = X*wf,. The only difference is the presence

of the operator X, so formulation of a linear inverse problem requires the
additional determination of K. We now do this for two particular problems.

4.1.2.1 The Deconvolution Problem. Recall from section 3.2.1 that
the convolution operator X is defined by

a(t) = A1(0) = [ kit - 9)f(@)

where k is a known p.d.f. The discrete version is

9= ki-ifi,

=1
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which is, in terms of its components,

[ 1 ke koi kg o komn fi
g2 | Kk ko k_; k-_m+2 2
B |=|k k ko k_m+3 fa

| Im | L km—l km-—z km—s b kO 4 L fm i

In the discrete representation with m intervals on [0, 1], we take f constant
on subintervals with boundary points i/m, where i € {0,... ,m}. To obtain
the correct proportions in the representer K, we take k to be constant on
intervals of width 1/m that are centered at the points ¢/m, ¢ € Z. This leads

to the definition
(i+1/2)/m

k= / k(t) dt.
(i-1/2)/m

4.1.2.2 The Corpuscle Problem. Recall the formulation of the corpus-
cle problem from section 3.2.2. Spheres with random radii are distributed
at random uniformly in a solid medium. The sphere radius p.d.f. is f,,
with support [0, Ry]. A slice through the medium gives data that are circles
(sphere-slice intersections) with p.d.f. g,. The functional X,, which describes
the relationship between f, and g,, is nonlinear. Specifically, .

R (2 _ 42y-1/
0olt) = (B f](8) = L& = E) " ol@) dz.

fORM zf,(z)dz

However, we can define a new function £, by f.(t) = f.(t) / foRM zf,(z) dz,
and observe that
Ry
t

0olt) = [, F,)(8) = [ .](8) = ¢ / (a* — )21, (z) de,

where X is a linear operator. Since f, is simply a constant multiple of the
p.d.f. f,, which we wish to estimate, we can recover f, by normalizing f.;
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A
EFAGE™

To compute the discrete operator, let us first scale [0, Ry] into [0, 1] by
using t = Rys and z = RMz The 1ntegral then becomes

fo(t) =

g(Rums) = Rys / (2% — 8%)"V2f(Ry2) dz.

The domain of integration proceeds from the midpoint of an interval to 1;
thus, the discrete version is

Il

1/2

£
— 3 . m__i-z—
=Ry / ‘/—;:;_2)‘2+j=2i4:-1f21;£ \/;:_(_",:n_l?

Since [(2% — s%)~/2dz = log [z + (2% — s?)'/?], we have

g=Kf, or g;= RM ’—ILZ'U,_.,fJ for ze{l...,m},

j=1
where
Vo, j<t
i+y/P-(i-1/2)? ..
Vi = { log [ i-1/2 ] ’ J=1
j+/72—(i-1/2) o
log [j—1+\/(3'—1)’—(i—1/2)’] » I

4.2 Selecting the Smoothing Parameter

Practically speaking, we need an automatic procedure for selecting the
smoothing parameter. Cross-validation is suited to least-squares problems
and has been applied to spline smoothing and other statistical estimation
and regression problems. Since discrete AR estimation is a smoothing spline
problem, the technique of cross-validation is directly applicable. We use
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generalized cross-validation (GCV) to select the AR smoothing parameter
in density estimation and linear inverse problems. For background informa-
tion on cross-validation and GCV, see Wahba [78] and [79], Gu [23], and
Hardle [27]. . -

4.2.1 Density Estimation

The discrete representation (4.3) has unconstrained solution g = M,fy,

where M, = (W + aD*W D)~1W. Let Tr denote the trace operator, and let

the weighted discrete inner product (-, -);, be given by (a, b),, = 3 _iv a:bw;.
The GCV score function

(I = Mo) fullfy
[TI(I - Ma)]2

Cla) =1

is an estimator of mean-squared error. The GCV criterion for selection of
the smoothing parameter o is

minimize C(a).
23

Note that the numerator of C(a) is simply the weighted squared deviation
i 1(9i = fai)?wi, where (fr1,... , fam) is the histogram density estimator
of (4.5). '

For an illustrative example, we take a sample of size n = 100 from the
beta distribution (defined on page 97) with density (., 3, 5) and compute
the GCV score for a range of o values (Figure 4.6). Using the value of o
selected by the GCV criterion, we then compute the second iteration of the

AR sequence (Figure 4.7).

4.2.2 Inverse Problems

This is similar to the standard density estimation case. The discrete rep-
resentation has unconstrained solution f = M,g,, where M, = (K*WK +
aD*W D)1 K*W. The technique of GCV can be adapted to the linear inverse
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problem. The GCV criterion in this case is

(I — KM,)gnl3
[Tr(I - KM,)]

minimize C(a) =
[+

There is an extra K in the score because M,g, is an estimator of f and
KM.,g, is an estimator of g. Note that g is the distribution of the (observ-
able) data.

The numerator of C(c) in this case is the weighted squared deviation
S [(K F)i — gn,il*wi, where K f is the transformed estimator of the under-
lying unobservable density, hence an estimator of the observable data density
g. Of course, (gn1,--- »9gnm) is the histogram density estimator of the ob-
servable data. |

For an example of GCV in deconvolution estimation, we take a sample of
size n = 100 from the density 8(-, 3, 5) as the signal. The noise distribution
is normal with a standard deviation of 0.1 and zero mean. Once again, we
compute the GCV score for a range of a values (Figure 4.8). Using the value
of a selected by the GCV criterion, we then compute the second iteration of
the AR sequence (Figure 4.9). .

For an example of GCV in corpuscle problem estimation, we take a sample
of size n = 250 from density 3(-,5,3) as the signal. As usual, we compute
the GCV score for a range of o values (Figure 4.10). Using the o selected by
the GCV criterion, we then compute the second iteration of the AR sequence
(Figure 4.11).

4.3 Simulation Study: Deconvolution

In this section, we present the results of a modest simulation study of the
deconvolution problem, in which we compare the the AR deconvolution es-
timator to the NEMS estimator of Eggermont and LaRiccia [15] and the
Fourier kernel method studied by Stefanski [69], Fan [18], and others.

We use the signal and noise distributions for which results are tabulated
in Eggermont and LaRiccia [15] and compare our AR results to theirs for
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the NEMS and Fourier estimators. Optimal smoothing-parameter selection
is possible for all three estimators, since we know the true signal distribu-
tions. There is an automatic procedure for selecting the NEMS smoothing
parameter, and we use GCV to select the AR smoothing parameter. All three
estimators are compared for optimal selection of the smoothing parameter,
and the NEMS and AR estimators are compared for automatic selection.
The basis for comparing the various estimators f in this simulation is the L,

- €error

1 =l = / -1l

where f is the density of the underlying signal (without noise). The average
L, error for a number of repetitions is taken as an estimate of E ||f — f|-

Average L; errors for various signal distributions are presented in Ta-
bles 4.1 (with normal noise) and 4.2 (with uniform noise) for a sample size
of 100. Sample means and standard deviations of L, errors for a range of
sample sizes are presented in Table 4.3, but these results are limited to two
of the normal-noise cases.

For the simulation study, signal and noise distributions are based on the |

normal density

8e) = Z=e" and ¢(si 0) = 76 (3),

‘the uniform density

u(z) = Ijpy)(z) and u(z; o) = %u (;) ,

and the beta density

a—171 _ L\b-1
ﬂ(m’ a, b) = z él(a b”)’) I[O,l](x) and ﬁ(za a, b; U) = %ﬂ (i"y a, b) .

The six signal densities we use in the simulation are
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(D1)  f(z) =0.9¢(z — 5; 0.5) + 0.1¢(z — 7; 0.25),
(D2)  f(z) =0.9¢(z — 5; 0.5) + 0.1¢(z — 7; 0.5),
(D3)  f(z) = 0.5¢(z — 5.82; 0.57) + 0.5¢(x — 4.18; 0.57),

(D4)  f(z) =¢(z - 5),
(D5)  f(z) =u(z—3;5), and
(D6)  f(z) =Bz -3, 2.4, 3.6; 5).

* Convolution is accomplished, of course, by adding noise to the signal. Noise
densities used in the simulation are normal (with various standard devia-
tions) and uniform on [0,1]. Combinations of signal and normal noise are
referenced as N1-N8. See Table 4.1 for the particular values. The correspond-
ing combinations with uniform noise (referenced as Ul, etc.) are detailed in |
Table 4.2. o

The NEMS and Fourier estimation parameters are detailed in Eggermont
and LaRiccia [15]. We now describe the AR parameters for this simulation.

For the given combinations of signal and noise, an estimation domain of
[0,10] is adequate to capture most of the data. Observations fall outside of
this region only rarely.

The AR penalty Dz = z” is used in all cases except N5, U5, and N7, in
which Dz = 2’ is used for reasons of numerical stability.

AR estimators are calculated using model (4.4) of page 88 with an itera-
tion count of 7 = 2. The initial weight for the AR procedure is the constant
function. In the case of automatic smoothing parameter selection, the result
of GCV applied to the first-step AR estimator is used as the second-step
smoothing parameter, in addition to using the first-step estimate as the ref-
erence measure in the second iteration.

Sample sizes are n = 100 in Tables 4.1 and 4.2, and n =50, 100, 250, 500,
and 1000 in Table 4.3. A simulation repetition count of N = 1000 is used
in all cases. To conserve computation time, a grid size of m = 100 is used
throughout.
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The S-PLUS language, version 3.4, is used for programming the proce-
dure, along with a few utility functions written in the C language. A native
S-PLUS minimization routine is used in both the optimal and GCV smooth-
ing parameter selection. This routine searches for local extrema on an inter-
val. Reasonable a-search regions are selected separately for each case. It is
interesting to note that the GCV search is more efficient than the optimal o
search.

The computing platform used is a Silicon Graphics SGI-4D/PCXL-8 with
24 200-MHz IP19 processors and 1 GB of main memory. In this environment,
the simulation runs in about 24 hours.

4.3.1 Observations

For the study with normal noise and n'= 100 (Table 4.1), the NEMS and AR

estimators are competitive, whereas the Fourier estimator has much larger

errors. With optimal smoothing-parameter selection, the NEMS error ex-
ceeds the AR error in six out of eight cases; and with automatic selection,

the AR error exceeds the NEMS error in four out of eight cases. The Fourier

estimator has much higher errors.

The NEMS estimator performs slightly better than the AR estimator in
the case of uniform noise (Table 4.2). With optimal smoothing-parameter
selection, the NEMS error exceeds the AR error in two out-of six cases; and
with automatic selection, the AR error exceeds the NEMS error in five out
of six cases.

Several interesting observations arise from consideration of the results in
Table 4.3. Since various sample sizes are tested here, the data provide an
empirical indication of the rates of L; error convergence for the NEMS and
AR estimators in the cases of optimal and automatic smoothing-parameter
selection. This is limited, of course, to the two signal and noise combinations
under study here. '
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Error variances are comparable, with the AR estimator having marginally
lower dispersion for optimal selection, and the NEMS estimator having
slightly lower dispersion for automatic selection.

See Figures 4.12 and 4.13 for graphical presentations of the mean error
rates. Expected L; error can be modeled as

E|f-flh=kn,

and the coefficients k£ and p can be obtained from the Table 4.3 results by
linear regression. Estimates of the coefficients are presented in Table 4.4.

The Fourier estimator has higher error and a slower rate of convergence.
With optimal selection, the AR estimator has lower errors than the NEMS
estimator for both distributions tested. Also, the AR error converges at a
faster rate.

With automatic selection, convergence rates of the AR 'and NEMS es-
timators are practically the same. The NEMS error is slightly lower for
distribution N5, and the AR estimator has a slightly better rate for N2.

The AR estimator (for N2 and N5) and the NEMS estimator (for N2)
have optimal selection error convergence rates that are faster than the cor-
responding automatic rates, as would be expected. The small differences in
slope indicate that the automatic-selection procedures give estimators that
almost achieve the optimal-selection rate. For these cases, note that the lines
in Figure 4.13 are practically parallel.

In conclusion, asymptotic regression provides a reasonable and practical
technique for deconvolution estimation.
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Table 4.1. Mean L1 Error for Fourier, NEMS, and AR Deconvolution Esti-
mators with Normal ¢(- ; o) Noise, n = 100

optimal o automatic o
f o | Fourier NEMS AR | NEMS AR

N1 (D2) 50| .389 210 .210| .326 .250
N2 (D2) 29| .280  .167 .154| .205 .205
N3 (D3) .58 .301  .201 .205| .254 .258
N4 (D4) 50| .242 131 .105| .157 .156
N5 (D4) 20| .195  .127 .116| .144 .160
N6 (D5) .29| .265  .231 .226| .246 .287
N7 (D6) .29| .209 .136 .121| .150 .162
N8 (D1) .29| .208 181 .168| .225 .213

Table 4.2. Mean L; Error for NEMS and AR Deconvolution Estimators
with Uniform u(- ; 1) Noise, n = 100

optimal automatic
f | NEMS AR |NEMS AR

Ul (D2)| .169 .169| .194 .228
U3 (D3)| .168 .170| .189 .224
U4 (D4)| .133 .111| .170 .162
U6 (D5)| .232 .236| .269 .289
U7 (D6)| .13¢ .147| .164 .182
Us (D1)| .181 .177| .209 .21
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Table 4.3. Mean and Standard Deviation of L, Error for Fourier, NEMS,
and AR Deconvolution Estimators with Normal ¢(- ; .29) Noise, n = 50,
100, 250, 500, and 1000

optimal «a automatic o
Fourier =~ NEMS AR NEMS AR
n I s I s I s z s - I s

N2 50(.312 .079 .217 .077 .202 .078|.254 .083 .268 .108
100 [ .280 .060 .167 .060 .154 .058|.205 .067 .205 .090

250 | .244 .045 .120 .042 .108 .038 |.147 .048 .144 .067

500 |.222 .033 .094 .032 .081 .029.114 .037 .112 .053
1000}.204 .025 .071 .023 .062 .021|.086 .027 .086 .038

N5 50|.227 .072 .163 .076 .154 .063|.196 .082 .208 .092
100 (.195 .051 .126 .053 .116 .047|.144 .053 .160 .066

250 (.163 .036 .093 .036 .079 .030.103 .036 .112 .041

500 |.142 .026 .074 .026 .061 .021(.076 .026 .086 .028

1000 | .127 .020 .055 .018 .045 .014|.059 .019 .062 .017

Table 4.4. Empirical L, Error Rate Coefficients for Fourier, NEMS, and
AR Deconvolution Estimators in the Model E||f — f||; = k n™?

o_ptimal «a automatic o
Fourier NEMS AR | NEMS AR

N2 k| 0541 0920 0.955| 1.069 1.176
p| 0143 0369 0.396 | 0.362 0.379
N5 k| 0481 0.655 0.768 | 0.925 1.005
p| 0195 0.355 0.411{ 0.400 0.400
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Figure 4.1. AR Density Estimates with Various Discretization Grid Sizes,
. Buffalo Snowfall Data, n = 63.
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Figure 4.3. AR Density Estimates with Various Penalty Functional Orders
Buffalo Snowfall Data, n = 63.
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Appendix. Estimation for Gaussian

Processes

We consider random variables X : Q — V, where V is a space of real-valued
functions on some set I. Typically I C R, and here we take I = [0,1].

Definition (Gaussian Process). The stochastic process X(t) is said to be
Gaussian if the finite-dimensional distributions of X are multivariate normal;
i.e., if for every positive integer n and vector (¢i,...,t;) € I", the vector
(X(t1),...,X(t;)) has a multivariate normal distribution.

A Gaussian process process X(t) = m(t) + n(t) is characterized by its
mean value function EX(t) = m(t) and covariance function K(s,t) =
Cov[X(s), X (t)] = En(s) n(t).

Definition (Reproducing Kernel Hilbert Space). A Hilbert space Hx
of functions on I with inner product (f,g) is a reproducing kernel Hilbert
space (RKHS) if for each ¢ € I the point evaluation functional V;, defined by
Vi(f) = f(¢t) for all f € H, is continuous.

In a RKHS, each point evaluation functional V; has a Riesz representation
Vi(f) = (K:, f) = f(t) for a unique K; € H. The function K(s,t) =
Vi(K,) = (Ky, K,) i = K,(t) is called the reproducing kernel of H.

The linear span of X is the space

L(X) = {iaiX(t,-) :n.E N, a; ER, t; € I},

i=1
which is an inner product space with inner product (u,v) = E(uv) and norm
lu| = VEu2. The Hilbert space generated by X (t), denoted Ly(X), is the
|| - ||-completion of L(X).
Let Hx be the RKHS with reproducing kernel K(s,t) = E[X(s)X ()]
and inner product (:,-),. Let ¢ : Hx — La(X) be defined by ¢(K;) = X (¢).
Then ¢ has the properties

E¢(f) = (f,m)x and E&(f)é(9) = (f,9)k-
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Note that {X(t) : t € I} generates Lo(X), and {K; : t € I} generates
Hg. Furthermore, ¢ is an inner-product-preserving, bijective linear transfor-
mation in the sense that

(¢(f):¢(g))L2(X) = (f’ g)K :

Now let X (t) be a stochastic process with mean value function E X (t) =
m(t) and known covariance function K (s,t) = Cov[X(t), X(s)], and let Hy
be the RKHS with reproducing kernel K. In this case, the function ¢ : Hx —
Ly(X) given by ¢(K;) = X(t) has the properties

BY(f) = (fym)x and Covl@(£),$(s)] = (/9 -

Theorem A.1. Let {X(t) : t € I} be a stochastic process with mean value
m(t) = EX(t) and covariance K(s,t) = Cov[X(s), X (t)], where

(1) I is countable, or
(2) I is separable, K is continuous, and X (t) is separable.

Let P, be the probability measure induced by X on the space of sample paths.
Let Py be the probability induced by a zero-mean Gaussian process with covari-
ance function K. Then Py and Py are orthogonal if m ¢ Hyx and equivalent
if m € Hy, in which case

T () = exp [6(m) - Jml3].

Proof. See Parzen [51]. O

The following theorem is useful in that it gives explicit formulas for the
RKHS inner products that we need.

Theorem A.2. Consider the RKHS of functions on [a,b] with 0 < a < b <
1, where the reproducing kernel has the form

K(s,t) =u(s At)v(s V).
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Let z(s,t) = u(sVt)v(sAt)—u(sAt)v(sVt), and let y(t) = v'(t)v(t)—u(t)v'(t).
If z(s,t) > 0 and y(s) > 0 for all s and t # s in [a,b], then the corresponding
RKHS inner product is given by

2 [PIENT | _F(a)?
1= 1, “amy * w@v@
Proof. See Sacks and Ylvisaker [59] for a derivation. We simply verify the
reproducing property. Here, f means f ds.
_ [" (Ki/v) (F/v) Ki(a)F(a)
b= [ R
_ /‘ [uo @)/ (F/v) / ? [ut) v/v)' (F/v) L uae)v(t) Fa)
.« (u/v) ¢ (u/v) u(a) v(a)
= o(t) f (F/v) +u(t) - 0+ v(t)F(a)/v(a)

= v(®[F(t)/v() - F(a)/v(a)] +v(t)F(a)/v(a)
= F(2).

-0

Corollary A.3. Consider the RKHS of functions on [a,b] with0 < a <b <
1, where the reproducing kernel has the form

K(s,t) = u(s At)v(s Vi) w(s)w(t).
The corresponding RKHS inner product is given by
IFIE = I1F/wlf.

Proof. Note that w(s)w(t) = w(sAt)w(sVt). Apply the theorem to K(s,t) =
u(s At)w(s At) - v(s Vt)w(s Vt); ie., replace u by uw and v by vw in the
form || - || to obtain
2 _ [P (F/(vw))]* F(a)®
IFll% = T+ 3
a (u/v) u(a) v(a) w(a)

as required. v O
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As an aid in performing calculations, we can write
b 2
F(a)
F|? = / J+ ,
IFI=J, 7+ i)y v@
where J = [(F/v)']?/(u/v)'. Since (u/v)’ = y/v?, the integrand is
I v_2 F'%y? — 2F'Fo'v + F2"?
= —
1 2y 2F'Fy — F'
y v?

br-e()]

We consider several important examples of RKHS’s with this type of inner

product structure.

Example (1). Let K(s,t) = G(s A t), where G is non-negative and in-
creasing on I. Then u(t) = G(t) and v(t) = 1. Observe that z(s,t) =
G(sVt)—G(sAt)>0if s#t, y(t) =G'(t) > 0 for all £, and ' = 0. So

F?
. J = 'a""y
and the quadratic form is _
: b F' 2 F a)?
71 = [+ G (A1)

Example (2). Let K(s,t) = G(s At) = G(s)G(t), where G is non-negative
and increasing on I. Then u(t) = G(t) and v(t) = 1 — G(t). Observe that
z(s,t) = G(sVt)[1 — G(sAt)] — G(s At)[1 — G(s V)]
=G(sVt)—G(sAt),
so z > 0 if s # t. Furthermore, y(t) = G'(t)[1 — G(t)] + G(t)G'(t) = G'(¢).
So y > 0 for all ¢, and v' = —y. Thus,

F? ( FY )
J=_C—;T+(1—G) .
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The quadratic form is

bEY | FQ) ) 1 1
. @ Ti-ep F@ (G(a)[l—G(a)]_l—G(a))

IF|I* =

or

S(@F) PP, PP
. G G " T-60)

IF|* = (A.2)

Example (3). Let K(s,t) = G(s)G(t)(s At — st), where G is non-negative
and increasing on I. Then u(t) = ¢, v(t) = 1 — ¢, w(t) = G(t), and the
quadratic form is

[ R 1 s

b
jo-Fi = [y £ EOE,

or
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